Ok
first of all, for q(x)/p(x)
if the degree of q(x) is less than the degree of p(x),then the horizontal assemtote is 0
then simplify
any factors you factored out is now a hole, remember them
to find the vertical assemtotes of a function, set the SIMPLIFIED denomenator equal to 0 and solve
so
y=(x-5)/(x^2-1)
q(x)<p(x)
horizontal assemtote is y=0
no factors to simplify so no holes
set denomenator to 0 to find vertical assemtote
x^2-1=0
(x-1)(x+1)=0
x-1=0
x=1
x+1=0
x=-1
the horizontal assemtotes are x=1 and -1
36/96 x 100= 37.5% is the answer
Answer:
∠1 is 33°
∠2 is 57°
∠3 is 57°
∠4 is 33°
Step-by-step explanation:
First off, we already know that ∠2 is 57° because of alternate interior angles.
Second, it's important to know that rhombus' diagonals bisect each other; meaning they form 90° angles in the intersection. Another cool thing is that the diagonals bisect the existing angles in the rhombus. Therefore, 57° is just half of something.
Then, you basically just do some other pain-in-the-butt things after.
Since that ∠2 is just the bisected half from one existing angle, that means that ∠3 is just the other half; meaning that ∠3 is 57°, as well.
Next is to just find the missing angle ∠1. Since we already know ∠3 is 57°, we can just add that to the 90° that the diagonals formed at the intersection.
57° + 90° = 147°
180° - 147° = 33°
∠1 is 33°
Finally, since that ∠4 is just an alternate interior angle of ∠1, ∠4 is 33°, too.
The second dot with says x+y=360 y=8x
Answer: 5.2
Step-by-step explanation:
3*7 = 21
21/5 = 4.2