Answer:
The value to the given expression is 8
Therefore ![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D8)
Step-by-step explanation:
Given expression is (StartFraction (10 Superscript 4 Baseline) (5 squared) Over (10 cubed) (5 cubed)) cubed
Given expression can be written as below
![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3)
To find the value of the given expression:
![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=\frac{((10^4)(5^2))^3}{((10^3)(5^3))^3}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D%5Cfrac%7B%28%2810%5E4%29%285%5E2%29%29%5E3%7D%7B%28%2810%5E3%29%285%5E3%29%29%5E3%7D)
( By using the property (
)

( By using the property
)

( By using the property
)

( By using the property
)
(By using the property
)

( By using the property
)


Therefore ![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D8)
Therefore the value to the given expression is 8
A = 2w+5
example: on week three, she would have the recipes from the other weeks that you have to account for as well as the extra five
2(3)+5=11 so A would equal 11 by week three.
Use multiplication because it is essentially repeated addition.
2(from week 1) + 2(from week 2) + 2(from week 3) + 5(prior to school) =11
Answer:
Step-by-step explanation:
You need to set up a proportion
Let x = NK
7/13 = x/56 Notice that the longest side of the small trapezoid is the denominator of the fraction on the left. That means that the longest side of the large trapezoid must also be the denominator of that fraction on the right.
Cross multiply
13x = 7*56 Combine the right
13x = 392 Divide by 13
x = 392/13
x = 30.15
NK = 30.15
I think 2 but I might be wrong