let's notice something, we have a circle with a radius of 12 and one 90° sector is cut off, so only three 90° sectors of the circle are left shaded, so namely the cone will be using 3/4 of that circle.
think of it as, this shaded area is some piece of paper, and you need to pull it upwards and have the cutoff edges meet, and when that happens, you'll end up with a cone-shaped paper cup, and pour in some punch.
now, once we have pulled up the center of the circle to make our paper cup, there will be a circular base, its diameter not going to be 24, it'll be less, but whatever that base is, we know that is going to have the same circumference as those in the shaded area. Well, what is the circumference of that shaded area?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=12 \end{cases}\implies C=2\pi 12\implies C=24\pi \implies \stackrel{\textit{three quarters of it}}{24\pi \cdot \cfrac{3}{4}} \\\\\\ 6\pi \cdot 3\implies 18\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D12%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%2012%5Cimplies%20C%3D24%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bthree%20quarters%20of%20it%7D%7D%7B24%5Cpi%20%5Ccdot%20%5Ccfrac%7B3%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%206%5Cpi%20%5Ccdot%203%5Cimplies%2018%5Cpi)
well then, the circumference of that circle at the bottom will be 18π, so, what is the diameter of a circle with a circumferenc of 18π?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=18\pi \end{cases}\implies 18\pi =2\pi r\implies \cfrac{18\pi }{2\pi }=r\implies 9=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{diameter is twice the radius}}{d=18}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20C%3D18%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%2018%5Cpi%20%3D2%5Cpi%20r%5Cimplies%20%5Ccfrac%7B18%5Cpi%20%7D%7B2%5Cpi%20%7D%3Dr%5Cimplies%209%3Dr%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bdiameter%20is%20twice%20the%20radius%7D%7D%7Bd%3D18%7D~%5Chfill)
<em>The complete exercise with the answer options is as follows:</em>
Mancini's Pizzeria sells four types of pizza crust. Last week, the owner tracked the number sold of each type, and this is what he found.
Type of Crust Number Sold
Thin crust 364
Thick crust 240
Stuffed crust 176
Pan style 260
Based on this information, of the next 3000 pizzas he sells, how many should he expect to be thick crust? Round your answer to the nearest whole number. Do not round any intermediate calculations.
Answer:
692 thick crust pizzas
Step-by-step explanation:
With the data given in the exercise, we must first find the total number of pizzas, then we must find the proportion between the thick crust pizzas and the total number of pizzas, finally we must propose a rule of three to find the new proportion of crust pizzas thick on a total of 3000 pizzas.
Type of Crust Number Sold
Thin crust 364
Thick crust 240
Stuffed crust 176
Pan style 260
total pizzas : 1040
Now we must calculate for 3000 pizzas how much would be the total of thick crust pizzas.For that we must use the relationship found, that is, in 1040 pizzas there are 240 thick crust pizzas
1040→240
3000→x
x=
= 692
Now we have a new proportion that out of 3000 pizzas there are a total of 692 thick crust pizzas
Answer:
C
Step-by-step explanation:
Increase is difference between ending and begining value so 23-(-8) =23+8.
In this case its absolute value because it has to be positive
Answer:
12
Step-by-step explanation:
it should be the answer if not messge me so we can work it out
Ford Family consists of:
a) 2 adults
The price of ticket for each adult is $18.55. This can be approximated to $19 if we round it to nearest dollar. So the price of ticket for 2 adults will be 2 x 19 = $38
b) 3 children between ages 2 and 10.
Ticket for each child between ages 2 - 10 is $12.59 which can be approximated to $13. So ticket price for 3 children will be 3 x 13 = $39
c) 2 children below the age of 2.
Ticket price for each child is $6.54 which can approximated as $7. So ticket price for 2 children will be 2 x 7 = $14
The estimated total amount due on the family equals = 38 + 39 + 14 = $91
In each of the 3 cases we rounded up the values. So this means the actual amount must be slightly lesser than $91. The actual bill was $87.95 which is close to $91 and lesser than it. Hence we can conclude that $87.95 is the correct amount due for Ford Family.