Answer: The hook would be 2.2 inches (approximately) above the top of the frame
Step-by-step explanation: Please refer to the picture attached for further details.
The top of the picture frame has been given as 9 inches and a 10 inch ribbon has been attached in order to hang it on a wall. The ribbon at the point of being hung up would be divided into 5 inches on either side (as shown in the picture). The line from the tip/hook down to the frame would divide the length of the frame into two equal lengths, that is 4.5 inches on either side of the hook. This would effectively give us two similar right angled triangles with sides 5 inches, 4.5 inches and a third side yet unknown. That third side is the distance from the hook to the top of the frame. The distance is calculated by using the Pythagoras theorem which states as follows;
AC^2 = AB^2 + BC^2
Where AC is the hypotenuse (longest side) and AB and BC are the other two sides
5^2 = 4.5^2 + BC^2
25 = 20.25 + BC^2
Subtract 20.25 from both sides of the equation
4.75 = BC^2
Add the square root sign to both sides of the equation
2.1794 = BC
Rounded up to the nearest tenth, the distance from the hook to the top of the frame will be 2.2 inches
B should be the correct answer
The answer is 15/18
because if you just put 15/18 it will give you <span>0.83333333333
and for 2/3 it will give you </span><span>0.66666666666
and we all know which number is bigger.
Hope this helps</span>
Just rank every pair of numbers for example:
The first one is: 1,-3.
2•1-3•-3>12
2+9>12
11>12
That's Incorrect. The first pair of numbers doesn't match the inequality.
Now do the same thing to all the other pairs of numbers.
Answer:
The difference in the sample proportions is not statistically significant at 0.05 significance level.
Step-by-step explanation:
Significance level is missing, it is α=0.05
Let p(public) be the proportion of alumni of the public university who attended at least one class reunion
p(private) be the proportion of alumni of the private university who attended at least one class reunion
Hypotheses are:
: p(public) = p(private)
: p(public) ≠ p(private)
The formula for the test statistic is given as:
z=
where
- p1 is the sample proportion of public university students who attended at least one class reunion (
)
- p2 is the sample proportion of private university students who attended at least one class reunion (
)
- p is the pool proportion of p1 and p2 (
)
- n1 is the sample size of the alumni from public university (1311)
- n2 is the sample size of the students from private university (1038)
Then z=
=-0.207
Since p-value of the test statistic is 0.836>0.05 we fail to reject the null hypothesis.