Step-by-step explanation:
Draw diagonal AC
The triangle ABC has sides 17 and 25
Say AB is 17, BC is 25
Draw altitude on side BC from A , say h
h = 17 sin B
Area = 25*17 sin B = 408
sin B = 24/25
In ∆ ABC
Cos B = +- 7/25
= 625 + 289 — b^2 / 2*25*17
b^2 = 914 — 14*17 = 676
b = 26
h = 17*24/25 = 408/25 = 16.32
Draw the second diagonal BD
In ∆ BCD, draw altitude from D, say DE =h
BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2
BD^2 = 16.32^2 + (25 + 4.76)^2
= 885.6576 + 266.3424
BD = √ 1152 = 33.94 m
Answer:
I asked my teacher if we could use that she said it's considered cheating, I still use it
Step-by-step explanation:
Answer:
12 % reduction
Step-by-step explanation:
11800 - 10384 = 1416
1416 / 11800 = 0.12
0.12 × 100 = 12
1 Convert 12\frac{2}{3}12
3
2
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{12\times 3+2}{3}\times 3\frac{1}{4}
3
12×3+2
×3
4
1
2 Simplify 12\times 312×3 to 3636
\frac{36+2}{3}\times 3\frac{1}{4}
3
36+2
×3
4
1
3 Simplify 36+236+2 to 3838
\frac{38}{3}\times 3\frac{1}{4}
3
38
×3
4
1
4 Convert 3\frac{1}{4}3
4
1
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{38}{3}\times \frac{3\times 4+1}{4}
3
38
×
4
3×4+1
5 Simplify 3\times 43×4 to 1212
\frac{38}{3}\times \frac{12+1}{4}
3
38
×
4
12+1
6 Simplify 12+112+1 to 1313
\frac{38}{3}\times \frac{13}{4}
3
38
×
4
13
7 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
\frac{38\times 13}{3\times 4}
3×4
38×13
8 Simplify 38\times 1338×13 to 494494
\frac{494}{3\times 4}
3×4
494
9 Simplify 3\times 43×4 to 1212
\frac{494}{12}
12
494
10 Simplify
\frac{247}{6}
6
247
11 Convert to mixed fraction
41\frac{1}{6}41
6
1
41 and 1/6
10,800 would be the best awnser for you