Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
Answer:
45 i think i dont know
Step-by-step explanation:
m
∠
2
=
x
holds true.
Complementary angles have a sum of
90
˚
. Thus, if
∠
1
and
∠
2
are complementary,
m
∠
1
+
m
∠
2
=
90
Substitute the equivalent forms of these angle measurements
(
x
,
x
)
.
x
+
x
=
90
Solve algebraically.
2
x
=
90
x
=
45
Each angle is
45
˚
.
Answer:
43
Step-by-step explanation:
I would see a pattern like this
1 4 6 2 5 7 8 9 7 15 41 ?
------------------- ---------
start pattern key
then
15 = 8 × 2 - 1
a10 = a7 × a4 - a1
41 = 9 × 5 - 4
a11 = a8 × a5 - a2
? = 7 × 7 - 6 = 43
a12 = a9 × a6 - a3
Answer: B
Step-by-step explanation:
Edge2020