Answer: it is A that right
Complete question :
Tom will rent a car for the weekend. He can choose one of two plans. The first plan has an initial fee of $57.98 and costs an additional $0.14 per mile driven. The second plan has an initial fee of $53.98 and costs an additional $0.16 per mile driven. How many miles would Tom need to drive for the two plans to cost the same?
Answer:
200 miles
Step-by-step explanation:
Let miles driven = x
First option :
57.98 + 0.14x
Second option :
53.98 + 0.16x
First option = second option
57.98 + 0.14 = 53.98 + 0.16x
57.98 - 53.98 = 0.16x - 0.14x
4 = 0.02x
x = 200
200 miles
I belive it would be y=-5/1x+6?
But im only like 90% sure so dont take my word for it but i hope that right?
a) The cost for 10 mile taxi ride is $18
b) The cost for m mile taxi ride is 1.5 m + 3
Step-by-step explanation:
Step 1 :
The fixed charges for the pick up = $3
Charges per mile = $1.50
Let s denote the total miles driven and t be the total cost for the trip
This can be represented by the equation
t = 3 + 1.5s
Step 2:
Distance traveled by Jonathan in his trip = 10 miles
So cost for riding 10 miles is
t = 3 + 1.5(10) = 3 + 15 = $18
The cost for 10 mile taxi ride is $18
Step 3 :
If the distance traveled is m miles, then substituting s = m in the above equation we get the cost as 1.5 m + 3
Step 4 :
Answer :
a) The cost for 10 mile taxi ride is $18
b) The cost for m mile taxi ride is 1.5 m + 3
Answer:
Step-by-step explanation:
1. 5, 3.5,
,
, -7
2. 10, π ,3.1415, 0, -10
3. 1
, 1.44, 1.4(3), 1.(43), 