Answer:
D. -6m²n² + 10m²n + 8mn² - 10mn
Step-by-step explanation:
(-7mn + 8mn² - 8m²n²) + (10m²n + 2m²n² - 3mn)
Apply the distributive property to remove the parentheses
-7mn + 8mn² - 8m²n² + 10m²n + 2m²n² - 3mn
Combine like terms together and arrange in standard form
-7mn + 8mn² - 8m²n² + 10m²n + 2m²n² - 3mn
-8m²n² + 2m²n² + 10m²n + 8mn² - 7mn - 3mn
-6m²n² + 10m²n + 8mn² - 10mn
Answer:
The pairs of integer having two real solution for
are




Step-by-step explanation:
Given

Now we will solve the equation by putting all the 6 pairs so we get the following
for 
for 
for 
for 
for 
for 
The above all are Quadratic equations inn general form 
where we have a,b and c constant values
So for a real Solution we must have

for
we have
which is less than 0 ∴ not a real solution.
for
we have
which is greater than 0 ∴ a real solution.
for
we have
which is greater than 0 ∴ a real solution.
for
we have
which is greater than 0 ∴ a real solution.
for
we have
which is equal to 0 ∴ a real solution.
for
we have
which is less than 0 ∴ not a real solution.
Answer:
i am pretty sure its 8
Step-by-step explanation:
because a negative plus a positive = wichever one is bighger and 8 is bigger than 3 so 11 is positive. 8 +3 = 11
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>
This might help you..need more information