1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
15

Out of a group of 3 people, 2 study French and 1 studies Spanish. Two people are drawn randomly from the group without replaceme

nt. Display all possible outcomes as an organized list.
Mathematics
1 answer:
zimovet [89]3 years ago
7 0

Answer:

- 1 French, 1 Spanish

- 2 French

You might be interested in
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
Tan x + tan 2x = 0
choli [55]

stated method in question is wrong!

<u>Step-by-step explanation:</u>

We need to find the general solution of x ! for the equation tan x + tan 2x = 0

⇒  tan x + tan 2x = 0

⇒  (tan x + tan 2x)-tan2x = 0-tan2x

⇒  tan x = -tan2x

Now , we know that tan(\pi -2x) = -tan2x

⇒  tan x = -tan2x

⇒  tan x = tan(\pi -2x)

Now , we know that TanA = TanB \\A=B

⇒  tan x = tan(\pi -2x)

⇒  x = \pi -2x

⇒  3x = \pi

⇒  x = \frac{\pi}{3}     ......(1)

General solution of Tan x is : x = n\pi + \alpha , \

Here , from equation (1) we get  \alpha =\frac{\pi }{3} . Hence general solution is :

⇒ x = n\pi +\frac{\pi }{3} .Therefore , stated method in question is wrong!

4 0
3 years ago
Victor is ordering pizzas for a party. He would like to have 1/4 of a pizza for each guest. He can only order whole pizzas, not
sertanlavr [38]
7 pizzas, because you would divide 27 by 4 and get 6.75 and then round it up to 7.

Hope this helped :)
5 0
3 years ago
Read 2 more answers
Need the answer now pls
Schach [20]

Answer:

35x-35y

Step by step explanation: I

0.5(20x-50y+36)-0.25(100x+40y-12)

10x-25y+18+25x-10y+3 -------- after we distribute 0.5&-0.25

10x+25x-25y-10y+18+3. ---------we collect the like terms to add them or substract

35x-35y+21 -----------------------------simplified form

6 0
3 years ago
Read 2 more answers
Can someone give me the answers please?
lutik1710 [3]

Answer:

6. slope= -4/5     Y-intercept is 3

7.

a.y=-2x

b.y=1x+1

c.5/2x-1

d.y=4x+3

e.y=-3/2x-5

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Wang Xiu Ying has
    15·2 answers
  • Can someone answer this problem fast for me please
    5·1 answer
  • Solve y^2+7y+12=0 by completing the square.​
    6·1 answer
  • Como se hace esto?
    10·1 answer
  • Help! If a = 57 in, b = 23 in, c = 72 in, and d = 26 in, what is the perimeter?
    5·2 answers
  • Can somebody please answer number 16
    5·1 answer
  • Ms. Yost has 20 boxes of markers. She buys 420% more boxes. How many boxes will she have in all?
    10·1 answer
  • What is the rate in cups of lemon juice per cup of Greek yogurt ??
    14·1 answer
  • Pls help me rnnn and dont u dare to put links
    10·2 answers
  • Name the polynomial by degrees and the number of<br> terms.<br> 7x^4+ 7x^3 +10x
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!