1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
12

7) Pedro wants to make a 35% sugar solution. He has 3 ounces of a 56% sugar. How many ounces

Mathematics
1 answer:
jek_recluse [69]3 years ago
3 0
To make 35% sugar solution, pedro needs 2 and 1/2 or 2.5 ounces of 14% sugar solution, assuming a 14% of sugar is .75 or 2/4 ounce.
You might be interested in
En una empresa agrícola, la utilidad (en miles de dólares) al vender x repuestos para tractores agrícolas está dada por la funci
Katena32 [7]

Answer:

a. 5

b. 32

Step-by-step explanation:

Lo primero es corregir la función, la cual esta dada por () = − x^2+ 32, faltaba la x en la función, sino no tendría sentido.

a. debemos buscar la cantidad de repuesto donde el valor no sea haga negativo, por lo tanto debe ser un numero que al cuadrado no sea mayor que 32, pero sea el que más se encuentre cerca.

en este caso el valor es 5, debido que 6^2 es 36, es decir se pasa y 4^2 es 16, aunque no se pasa, es mejor 5^2 que es 25 y se encuentra más cerca.

b. El valor de máxima utilidad sería 32, ya que ese sería el mayor valor que podría tomar la función, el termino independiente.

6 0
3 years ago
I need help me, please and example to this is for a test
Ulleksa [173]

Answer:

4 inches

Step-by-step explanation:

you can look it up on google

4 0
3 years ago
Just need a little help
CaHeK987 [17]
2/3x + 6 - 1/3x -4 = -6
1/3x + 2 = -6
1/3x = -6 - 2
1/3x = -8
x = -8 * 3
x = -24

5 0
3 years ago
True or false of the matrix question?
matrenka [14]
False of the matrix question
7 0
3 years ago
Read 2 more answers
Find the maxima and minima of the function <img src="https://tex.z-dn.net/?f=f%28x%2Cy%29%3D2x%5E%7B2%7D%20%2By%5E%7B4%7D" id="T
NARA [144]

Using the second partial derivative test to find extrema in D :

Compute the partial derivatives of f(x, y) = 2x² + y⁴.

∂f/∂x = 4x

∂f/∂y = 4y³

Find the critical points of f, where both partial derivatives vanish.

4x = 0   ⇒   x = 0

4y³ = 0   ⇒   y = 0

So f has only one critical point at (0, 0), which does belong to the set D.

Compute the determinant of the Hessian matrix of f at (0, 0) :

H = \begin{bmatrix}\dfrac{\partial^2f}{\partial x^2} & \dfrac{\partial^2f}{\partial y\partial x} \\ \\ \dfrac{\partial^2f}{\partial x\partial y} & \dfrac{\partial^2f}{\partial y^2}\end{bmatrix} = \begin{bmatrix}4 & 0 \\ 0 & 12y^2 \end{bmatrix}

We have det(H) = 48y² = 0 at the origin, which means the second partial derivative test fails. However, we observe that 2x² + y⁴ ≥ 0 for all x, y because the square of any real number cannot be negative, so (0, 0) must be a minimum and we have f(0, 0) = 0.

Using the second derivative test to find extrema on the boundary of D :

Let x = cos(t) and y = sin(t) with 0 ≤ t < 2π, so that (x, y) is a point on the circle x² + y² = 1. Then

f(cos(t), sin(t)) = g(t) = 2 cos²(t) + sin⁴(t)

is a function of a single variable t. Find its critical points, where the first derivative vanishes.

g'(t) = -4 cos(t) sin(t) + 4 sin³(t) cos(t) = 0

⇒   cos(t) sin(t) (1 - sin²(t)) = 0

⇒   cos³(t) sin(t) = 0

⇒   cos³(t) = 0   or   sin(t) = 0

⇒   cos(t) = 0   or   sin(t) = 0

⇒   [t = π/2   or   t = 3π/2]   or   [t = 0   or   t = π]

Check the values of g'' at each of these critical points. We can rewrite

g'(t) = -4 cos³(t) sin(t)

Then differentiating yields

g''(t) = 12 cos²(t) sin²(t) - 4 cos⁴(t)

g''(0) = 12 cos²(0) sin²(0) - 4 cos⁴(0) = -4

g''(π/2) = 12 cos²(π/2) sin²(π/2) - 4 cos⁴(π/2) = 0

g''(π) = 12 cos²(π) sin²(π) - 4 cos⁴(π) = -4

g''(3π/2) = 12 cos²(3π/2) sin²(3π/2) - 4 cos⁴(3π/2) = 0

Since g''(0) and g''(π) are both negative, the points (x, y) corresponding to t = 0 and t = π are maxima.

t = 0   ⇒   x = cos(0) = 1 and y = sin(0) = 0   ⇒   f(1, 0) = 2

t = π   ⇒   x = cos(π) = -1 and y = sin(π) = 0   ⇒   f(-1, 0) = 2

Both g''(π/2) and g''(3π/2) are zero, so the test fails. These values of t correspond to

t = π/2   ⇒   x = cos(π/2) = 0 and y = sin(π/2) = 1   ⇒   f(0, 1) = 1

t = 3π/2   ⇒   x = cos(3π/2) = 0 and y = sin(3π/2) = -1   ⇒   f(0, -1) = 1

but both of the values of f at these points are between the minimum we found at 0 and the maximum at 2.

So over the region D, max(f) = 2 at (±1, 0) and min(f) = 0 at (0, 0).

3 0
2 years ago
Other questions:
  • Given the set definitions below, find X Y. X = {100, 200} Y = {1,2}
    7·1 answer
  • How many simple events are in the sample space of the experiment of rolling 4 dice?
    15·1 answer
  • Come play among us with me!
    6·2 answers
  • -48 ÷ [-3 (2 - 4) ] = ?
    9·1 answer
  • Help rhis is geometry
    9·1 answer
  • What does x equal in 3x + 5 = -7
    14·1 answer
  • How can i write 55% as a fraction in simplest
    13·1 answer
  • What is the slope of y = 6x+2?
    15·2 answers
  • Please help<br><br> Find the range of the given data set.
    10·2 answers
  • Determine the equation of the line shown in the graph: graph of a vertical line with an x intercept of 3
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!