1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
12

A quiz has 10 multiple choice questions each with 4 answers that are equally likely to be the correct one. Suppose that the quiz

takers need to score 7 corrects out of 10 to pass. Answer the following questions when the quiz taker selects the answers randomly. a) Probability of marking exactly 3 incorrect answers. b) Probability of passing
Mathematics
1 answer:
PtichkaEL [24]3 years ago
7 0

Answer:

a) 0.0031 = 0.31% probability of marking exactly 3 incorrect answers.

b) 0.0035 = 0.35% probability of passing.

Step-by-step explanation:

For each question, there are only two possible outcomes. Either the student chooses the correct answer, or he does not. Questions are independent of each other. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

10 multiple choice questions

This means that n = 10

4 answers that are equally likely to be the correct one. The quiz taker selects the answers randomly.

This means that p = \frac{1}{4} = 0.25

a) Probability of marking exactly 3 incorrect answers.

3 incorrectly = 7 correctly, so this is P(X = 7).

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 7) = C_{10,7}.(0.25)^{7}.(0.75)^{3} = 0.0031

0.0031 = 0.31% probability of marking exactly 3 incorrect answers.

b) Probability of passing

At least 7 correct, so

P(X \geq 7) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 7) = C_{10,7}.(0.25)^{7}.(0.75)^{3} = 0.0031

P(X = 8) = C_{10,8}.(0.25)^{8}.(0.75)^{2} = 0.0004

P(X = 9) = C_{10,9}.(0.25)^{9}.(0.75)^{1} \approx 0

P(X = 10) = C_{10,10}.(0.25)^{10}.(0.75)^{0} \approx 0

P(X \geq 7) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = 0.0031 + 0.0004 + 0 + 0 = 0.0035

0.0035 = 0.35% probability of passing.

You might be interested in
Please answer this math question please and fast
lions [1.4K]

Answer:

its do9ne

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The sum of two consecutive odd integers is -46
Igoryamba

Answer: -31  l guess

explanation:The sum of two consecutive odd numbers is divisible by 4. An even number is divisible by 2, so it can be represented by 2n, where n is an integer. If we add 1 to an even number, then it will be odd. Therefore, an odd number can be represented as 2n + 1.

#l calculated as per explanation

5 0
3 years ago
VOLUME OF PYRAMIDS & CONES MAZE!
sukhopar [10]

Answer:

192m³

Step-by-step explanation:

This problem bothers on the mensuration of solid shapes, a square based pyramid

The highlighted figure is a square based pyramid

The volume of a pyramid is

V=a²h/3

Where a= base length

h= height

Given a= 8m

h= 9m

Volume = 8²*9/3

Volume = 64*3

Volume = 192m³

7 0
3 years ago
Determine mu Subscript x overbar and sigma Subscript x overbar from the given parameters of the population and sample size. mu e
Mademuasel [1]

Answer:

\bar x \sim N(\mu_{\bar x}=86, \sigma_{\bar x}=3)

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".  

Solution to the problem

Let X the random variable who represents the variable of interest. We know from the problem that the distribution for the random variable X is given by:

X\sim N(\mu =86,\sigma =24)  

We select a sample of size n=64. That represent the sample size.  

From the central limit theorem we know that the distribution for the sample mean \bar X is given by:  

\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})  

The mean for the sample distirbution would be given by:

\mu_{\bar x}=86

And the deviation given by:

\sigma_{\bar x} =\frac{24}{\sqrt{64}}=3

And then the distribution for the sample mean is:

\bar x \sim N(\mu_{\bar x}=86, \sigma_{\bar x}=3)

7 0
3 years ago
Determine the value of x!​
tester [92]

Answer:

x = 17.51

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 35 = x/25

25 tan 35 =x

x=17.50518

8 0
3 years ago
Other questions:
  • find the angle between the vectors. (first find the exact expression and then approximate to the nearest degree. ) a=[-8,6]. B=[
    10·1 answer
  • a paint mixture contains 32 gallons of base for every gallon of color. In 924 gallons of paint, how many gallons of color are th
    8·1 answer
  • Classify this triangle by the angles and lengths of sides shown.
    10·1 answer
  • What is the solution to -10 + p = -19
    12·2 answers
  • How would making a table help you to find the number of minutes it took Sam to cut the sheet metal into 8 pieces
    6·1 answer
  • 51pts! What is the factored form of this expression? 6x^2+5x-6=(_______)(______)
    13·1 answer
  • Rewrite 5 3/7 as an improper fraction.
    6·2 answers
  • N
    13·1 answer
  • Carry me in Rainbow six siege i need to reach plat put your xbox gamertag down below
    5·2 answers
  • In Mr. Hamilton's classroom, there are 16 supply boxes in the cabinet. Each supply box
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!