Answer:
4*3=12
12*4=
3*3=9
9*2=18
18+48=66
Step-by-step explanation:
Answer:
Verified


Step-by-step explanation:
Question:-
- We are given the following non-homogeneous ODE as follows:

- A general solution to the above ODE is also given as:

- We are to prove that every member of the family of curves defined by the above given function ( y ) is indeed a solution to the given ODE.
Solution:-
- To determine the validity of the solution we will first compute the first derivative of the given function ( y ) as follows. Apply the quotient rule.

- Now we will plug in the evaluated first derivative ( y' ) and function ( y ) into the given ODE and prove that right hand side is equal to the left hand side of the equality as follows:

- The equality holds true for all values of " C "; hence, the function ( y ) is the general solution to the given ODE.
- To determine the complete solution subjected to the initial conditions y (1) = 3. We would need the evaluate the value of constant ( C ) such that the solution ( y ) is satisfied as follows:

- Therefore, the complete solution to the given ODE can be expressed as:

- To determine the complete solution subjected to the initial conditions y (3) = 1. We would need the evaluate the value of constant ( C ) such that the solution ( y ) is satisfied as follows:

- Therefore, the complete solution to the given ODE can be expressed as:

1/125 in a decimal is 0.008.
X - number of the adults, y - number of children;
The system is:
10 x + 6 y = 3292
x + y = 350 => y = 350 - x
----------------------
10 x + 6 * ( 350 - x ) = 3292
10 x + 2100 - 6 x = 3292
4 x = 3292 - 2100
4 x = 1192
x = 1192 : 4
x = 298
y = 350 - 298
y = 52
Answer:
There were 598 adults and 52 children at the showing.