The solutions to f(x) = 64 is x = 7 and x = –7.
Solution:
Given data:
– – – – (1)
– – – – (2)
To find the solutions to f(x) = 64.
Equate equation (1) and (2), we get

Subtract 15 from both sides of the equation.



Taking square root on both sides of the equation, we get
x = ±7
The solutions to f(x) = 64 is x = 7 and x = –7.
Using pythagorean theorem:
816/100
404/25
hope this helps
I need to know if you where are you gonna is the day you
Check the picture below.
so the perimeter of the polygon is the sum of all its sides, namely, AB + BC + CD + DA.
now, let's check how long each side is,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &A&(~{{ -6}} &,&{{ -4}}~) % (c,d) &B&(~{{ -3}} &,&{{ 6}}~) \end{array} \\\\\\ d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ -------------------------------\\\\ AB=\sqrt{[-3-(-6)]^2+[6-(-4)]^2} \\\\\\ AB=\sqrt{(-3+6)^2+(6+4)^2} \\\\\\ AB=\sqrt{3^2+10^2}\implies \boxed{AB=\sqrt{109}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B%206%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-%28-4%29%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B3%5E2%2B10%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B109%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &B&(~{{ -3}} &,&{{6}}~) % (c,d) &C&(~{{ 4}} &,&{{ 0}}~) \end{array} \\\\ -------------------------------\\\\ BC=\sqrt{[4-(-3)]^2+[0-6]^2}\implies BC=\sqrt{(4+3)^2+(0-6)^2} \\\\\\ BC=\sqrt{7^2+(-6)^2}\implies \boxed{BC=\sqrt{85}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B6%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26C%26%28~%7B%7B%204%7D%7D%20%26%2C%26%7B%7B%200%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B%5B4-%28-3%29%5D%5E2%2B%5B0-6%5D%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B%284%2B3%29%5E2%2B%280-6%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B7%5E2%2B%28-6%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B85%7D%7D%5C%5C%5C%5C%0A-------------------------------)

![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &D(~{{ 2}} &,&{{-1}}~) % (c,d) &A&(~{{ -6}} &,&{{ -4}}~) \end{array}\\\\ -------------------------------\\\\ DA=\sqrt{[-6-2]^2+[-4-(-1)]^2}\\\\\\ DA=\sqrt{(-6-2)^2+(-4+1)^2} \\\\\\ DA=\sqrt{(-8)^2+(-3)^2}\implies \boxed{DA=\sqrt{73}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26D%28~%7B%7B%202%7D%7D%20%26%2C%26%7B%7B-1%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%5B-6-2%5D%5E2%2B%5B-4-%28-1%29%5D%5E2%7D%5C%5C%5C%5C%5C%5C%20DA%3D%5Csqrt%7B%28-6-2%29%5E2%2B%28-4%2B1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%28-8%29%5E2%2B%28-3%29%5E2%7D%5Cimplies%20%5Cboxed%7BDA%3D%5Csqrt%7B73%7D%7D)
sum those sides up, and that's the perimeter of the polygon.