A^2 + 3b + c - 2d
(3)^2 + 3(8) + (2) - 2(5)
9 + 24 + 2 - 10 = 25
Given that the roots of the equation x^2-6x+c=0 are 3+8i and 3-8i, the value of c can be obtained as follows;
taking x=3+8i and substituting it in our equation we get:
(3+8i)^2-6(3+8i)+c=0
-55+48i-18-48i+c=0
collecting the like terms we get:
-55-18+48i-48i+c=0
-73+c=0
c=73
the answer is c=73
Given - Taisha has a general goal is to burn the 280 calories.
she is varies by the 25 calories.
Find out the maximum and minimum of calories burn by the taisha.
To proof -
let us assume that the calories burn by the taisha be x.
as given the calories are varies by the 25 calories.
then the maximum calories equation becomes
x-25 = 280
x = 280 + 25
x = 305
the maximum calories burn by the taisha is 305 calories.
minimum calories equationbecomes
x + 25 = 280
x = 255
The minmum calories burn by the taisha is 255 calories.
Hence proved
Answer:
CDEF
Step-by-step explanation:
if the x value doesnt repeat then it is