Answer:
differentiate
for example what is difference between this and that
Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:
a
Step-by-step explanation:
Answer:
x=2
Step-by-step explanation:
4x−7(2−x)=3x+2
4x+(−7)(2)+(−7)(−x)=3x+2(Distribute)
4x+−14+7x=3x+2
(4x+7x)+(−14)=3x+2(Combine Like Terms)
11x+−14=3x+2
11x−14=3x+2
Step 2: Subtract 3x from both sides.
11x−14−3x=3x+2−3x
8x−14=2
Step 3: Add 14 to both sides.
8x−14+14=2+14
8x=16
Step 4: Divide both sides by 8.
x=2
Answer:
Train A - 50 miles per hour
train B - 30 miles per hour
Step-by-step explanation:
Let x mph be the speed of the train B, then the speed of the train A is (x+20) mph.
In 3 hours,
- train A travels 3(x+20) miles
- train B travels 3x miles
In total, they covered the distance of 240 miles, so
![3(x+20)+3x=240\ \ \ \text{[Divide by 3]}\\ \\x+20+x=80\\ \\2x=80-20\\ \\2x=60\\ \\x=30\ mph\\ \\x+20=30+20=50\ mph](https://tex.z-dn.net/?f=3%28x%2B20%29%2B3x%3D240%5C%20%5C%20%5C%20%5Ctext%7B%5BDivide%20by%203%5D%7D%5C%5C%20%5C%5Cx%2B20%2Bx%3D80%5C%5C%20%5C%5C2x%3D80-20%5C%5C%20%5C%5C2x%3D60%5C%5C%20%5C%5Cx%3D30%5C%20mph%5C%5C%20%5C%5Cx%2B20%3D30%2B20%3D50%5C%20mph)