Let x = red
Let 0.5x = green
Let (x) + (0.5x) = 1.5x = blue
Let 0.5(1.5x) = 0.75x = yellow
Let 0.75x + 4 = brown
![(x) + (0.5x) + (1.5x) + (0.75x) + (0.75 + 4) = 130](https://tex.z-dn.net/?f=%28x%29%20%2B%20%280.5x%29%20%2B%20%281.5x%29%20%2B%20%280.75x%29%20%2B%20%280.75%20%2B%204%29%20%3D%20130)
![x + 0.5x+ 1.5x + 0.75x + 0.75 + 4 = 130](https://tex.z-dn.net/?f=x%20%2B%200.5x%2B%201.5x%20%2B%200.75x%20%2B%200.75%20%2B%204%20%3D%20130)
![4.5x + 4 = 130](https://tex.z-dn.net/?f=4.5x%20%2B%204%20%3D%20130)
![4.5x = 126](https://tex.z-dn.net/?f=4.5x%20%3D%20126)
![x = 28](https://tex.z-dn.net/?f=x%20%3D%2028)
Use this value to calculate the other required numbers.
red = 28
green = 0.5x = 0.5(28) = 14
blue = 1.5x = 1.5(28) = 42
yellow = 0.75x = 0.75(28) = 21
brown = 0.75x + 4 = 0.75(28) + 4 = 25
Answer:
gl with that
Step-by-step explanation:
Answer:
it might be the second one not sure
Principal clements needs to buy 10 packages
<em><u>Solution:</u></em>
Given that, Principal clements wants to buy a pencil for each of the 57 fourth graders in her school
The pencils come in packages of 6
Therefore,
Total number of students = 57
<em><u>Thus, divide 57 by 6 to get the number of packages clements need to buy</u></em>
<em><u></u></em>
<em><u>Substituting the given values we get,</u></em>
![\text{Number of packages } = \frac{57}{6} \\\\\text{Number of packages }= 9.5 \approx 10](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20packages%20%7D%20%3D%20%5Cfrac%7B57%7D%7B6%7D%20%5C%5C%5C%5C%5Ctext%7BNumber%20of%20packages%20%7D%3D%209.5%20%5Capprox%2010)
Thus principal clements needs to buy 10 packages