Answer:
Arc DE = 90°
m<GAB = 82°
Arc DC = 49°
Step-by-step explanation:
Given:
m<EAF = 74°
m<EAD = right angle = 90°
Arc BG = 82°
Required:
Arc DE,
<GAB, and
Arc DC
Solution:
Recall that the central angle measure = the intercepted arc measure.
Therefore:
✔️Arc DE = m<EAD
Arc DE = 90° (Substitution)
✔️m<GAB = arc BG
m<GAB = 82° (Substitution)
✔️Arc DC = m<CAD
Find m<CAD
m<CAD = ½(180 - m<GAB)
m<CAD = ½(180 - 82)
m<CAD = 49°
Arc DC = m<CAD
Arc DC = 49°
Answer:
gg
Step-by-step explanation:
gg
Using a discrete probability distribution, it is found that:
a) There is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
b) There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
c) The expected value is of 1.3 lawns mowed on a randomly selected day.
<h3>What is the discrete probability distribution?</h3>
Researching the problem on the internet, it is found that the distribution for the number of lawns mowed on a randomly selected dayis given by:
Item a:
P(X = 2) = 0.3, hence, there is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
Item b:

There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
Item c:
The expected value of a discrete distribution is given by the <u>sum of each value multiplied by it's respective probability</u>, hence:
E(X) = 0(0.2) + 1(0.4) + 2(0.3) + 3(0.1) = 1.3.
The expected value is of 1.3 lawns mowed on a randomly selected day.
More can be learned about discrete probability distributions at brainly.com/question/24855677
Answer:
If the ml means miles than its 400
Step-by-step explanation: