Answer:
They are not parallel
Step-by-step explanation:
original equation
10x + 3y = -3
subtract 10x
3y = -10x - 3
divide by 3
y = -10/3x - 1
original equation
5x - 4y = -3
subtract 5x
-4y = -5x-3
divide by -4
y = 5/4x + 3/4
the slopes are not equal to each other (5/4x and -10/3x) so they are not parallel
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.
Vcylinder=hpir^2
Vsphere=(4/3)pir^3
Vcone=(1/3)hpir^2
Vcylinder=15*pi*5^2=375pi in^3
Vsphere=(4/3)*pi*6^3=288pi in^3
Vcone=(1/3)*15*pi*8^2=320pi in^3
greatest is Vcylinder at 375pi in^3
answer is A (cylinder)