Number 1 i think is C
i think number 2 is C
Answer:c and d
Step-by-step explanation:
The first option is correct.
Moving 1.5 units to the left (or -1.5 units to the right).
Moving 1 unit down (or -1 unit up).
Therefore you get the result of (-1.5, 1) as is the location of the rink.
Converting 52ft2 into meters sq
Answer:
1.5 unit^2
Step-by-step explanation:
Solution:-
- A graphing utility was used to plot the following equations:

- The plot is given in the document attached.
- We are to determine the area bounded by the above function f ( x ) subjected boundary equations ( y = 0 , x = -1 , x = - 2 ).
- We will utilize the double integral formulations to determine the area bounded by f ( x ) and boundary equations.
We will first perform integration in the y-direction ( dy ) which has a lower bounded of ( a = y = 0 ) and an upper bound of the function ( b = f ( x ) ) itself. Next we will proceed by integrating with respect to ( dx ) with lower limit defined by the boundary equation ( c = x = -2 ) and upper bound ( d = x = - 1 ).
The double integration formulation can be written as:

Answer: 1.5 unit^2 is the amount of area bounded by the given curve f ( x ) and the boundary equations.