<h3>Answer:</h3>
60 g O₂
<h3>General Formulas and Concepts:
</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:
</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 2 mol H₂O
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol H₂O → 2 mol O₂
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Divide/Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
64.00 g O₂ ≈ 60 g O₂
Answer:
double covalent bond
Explanation:
Double covalent bond -
It is the type of interaction observed between two species , which share the electrons in order to attain stability , is referred to as covalent bond.
The shared electrons are referred to as the bonding pairs or the shared pairs .
Stability and completion of the octet is the driving force for the formation covalent bond.
The molecules of the organic compound usually shows this type bonding .
A double covalent bond is the one which have four shared pair of electrons , i.e. two covalent bonds.
Hence , from the question,
Oxygen is capable to show double covalent bond .
It emphasizes the word and shows that it has meaning. emphasizing it makes you drawn to it more.
Answer:
A: Helium or Hydrogen
Explanation:
Terrestrial planets are the 4 inner most planets of the solar system which are mercury, venus, earth, Mars, while the giant planets are the 4 outer most which are Jupiter, Saturn, Uranus and Neptune.
Now, these outer most ones are the surface ones and are surrounded primarily by layers of hydrogen and helium gases.
The density is 1.12161 g/ml