What fractions? I see nothing...Do you have the choices?
For this case we have a function of the form:
H (t)
Where,
t: number of days
H: the daily high temperature
We have the point (0.29).
It means that the hottest day of the year had a temperature of 29 degrees.
Answer:
the hottest day of the year had a temperature of 29 degrees.
3, 6, 9, 12, 15
I did what you asked
The attached figure reprsents a prove that a rectangle has congruent diagonals.
<u>Given:</u> rectangle ABCD
<u>Prove:</u> BD ≅ AC
Answer:
2a) -2
b) 8
Step-by-step explanation:
<u>Equation of a parabola in vertex form</u>
f(x) = a(x - h)² + k
where (h, k) is the vertex and the axis of symmetry is x = h
2 a)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is 6, then
f(6) = 0
⇒ a(6 - 2)² - 6 = 0
⇒ 16a - 6 = 0
⇒ 16a = 6
⇒ a = 6/16 = 3/8
So f(x) = 3/8(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 3/8(x - 2)² - 6 = 0
⇒ 3/8(x - 2)² = 6
⇒ (x - 2)² = 16
⇒ x - 2 = ±4
⇒ x = 6, -2
Therefore, the other x-axis intercept is -2
b)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is -4, then
f(-4) = 0
⇒ a(-4 - 2)² - 6 = 0
⇒ 36a - 6 = 0
⇒ 36a = 6
⇒ a = 6/36 = 1/6
So f(x) = 1/6(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 1/6(x - 2)² - 6 = 0
⇒ 1/6(x - 2)² = 6
⇒ (x - 2)² = 36
⇒ x - 2 = ±6
⇒ x = 8, -4
Therefore, the other x-axis intercept is 8