If you are doing any scientific notation to the negative power the answer will be a decimal. In this case you will move the decimal point four places to the left.
The answer will be 0.0002077
Answer:
The required polynomial is
.
Step-by-step explanation:
If a polynomial has degree n and
are zeroes of the polynomial, then the polynomial is defined as

It is given that the polynomial R has degree 4 and zeros 3 − 3i and 2. The multiplicity of zero 2 is 2.
According to complex conjugate theorem, if a+ib is zero of a polynomial, then its conjugate a-ib is also a zero of that polynomial.
Since 3-3i is zero, therefore 3+3i is also a zero.
Total zeroes of the polynomial are 4, i.e., 3-3i, 3_3i, 2,2. Let a=1, So, the required polynomial is


![[a^2-b^2=(a-b)(a+b)]](https://tex.z-dn.net/?f=%5Ba%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5D)

![[i^2=-1]](https://tex.z-dn.net/?f=%5Bi%5E2%3D-1%5D)


Therefore the required polynomial is
.
A relation is any set of ordered pairs, which can be thought of as (input, output).
A function is a relation in which NO two ordered pairs have the same first component and different second components.
The set of first components (x-coordinates) in the ordered pairs is the DOMAIN of the relation.
The set of second components (y-coordinates) is the RANGE of the relation.
Part 1:
Domain: {-1, 1, 3, 6}
Range: {2, 2, 2, 2}
Part 2:
To determine whether the given relation represents a function, look at the given relation and ask yourself, “Does every first element (or input) correspond with EXACTLY ONE second element (or output)?”
Remember that a function can only take on 1 output for each input.
It helps to plot the points on the graph and perform the Vertical Line Test (VLT):
The Vertical Line Test allows us to know whether or not a graph is actually a function. If a vertical line intersects the graph in all places at exactly one point, then the relation is a function.
As you can see in the attached screenshot, every vertical line drawn only has 1 point in it. This means that each x-value corresponds to exactly one y-value. The given relation passed the VLT. Therefore, the relation is a function.
Please mark my answers as the Brainliest if you find my explanation helpful :)
Answer:
C
Step-by-step explanation:
Since the vertex is 2,1, that's the only equation that works for it. The 2 has to be the opposite, so -2, and the 1 stays 1.