The constant of proportionality if y varies inversely as the fourth power of x and when x=3, y=1 is k = 3^¼
<h3>Inverse variation</h3>
y = k ÷ x^¼
where,
- Constant of proportionality = k
When x = 3, y = 1
y = k ÷ x^¼
1 = k ÷ 3^¼
1 = k / 3^¼
1 × 3^¼ = k
k = 3^¼
Therefore, the constant of proportionality if y varies inversely as the fourth power of x and when x=3, y=1 is k = 3¼
Learn more about inverse variation:
brainly.com/question/10252139
#SPJ1
Answer:
differentiate
for example what is difference between this and that
The equation would look like
Y=-4x+7
Y=mx+b
The solutions to the questions are given below
a)
sample(n) word length sample mean
1 5,4,4,2 3.75
2 3,2,3,6 3.5
3 5,6,3,3 4.25
b)R =0.75
c)
- The mean of the sample means will tend to be a better estimate than a single sample mean.
- The closer the range of the sample means is to 0, the more confident they can be in their estimate.
<h3>What is the students are going to use the sample means to estimate the mean word length in the book.?</h3>
The table below shows sample means in the table.
sample(n) word length sample mean
1 5,4,4,2 3.75
2 3,2,3,6 3.5
3 5,6,3,3 4.25
b)
Generally, the equation for is mathematically given as
variation in the sample means
R =maximum -minimum
R=4.25-3.5
R =0.75
c)
In conclusion, In most cases, the mean of many samples will provide a more accurate estimate than the mean of a single sample.
They may have a higher level of confidence in their estimate if the range of the sample means is closer to 0 than it is now.
Read more about probability
brainly.com/question/795909
#SPJ1
Answer:
-14
Step-by-step explanation:
(-4)(5)+(-3)(-2)
=-20+6
=-14