Answer:
D
Step-by-step explanation:
I hope it's the correct one
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
.98 since the hundredth place is higher than a five it is rounded up
Answer:
7 is about 6 because it says to round to the nearest whole number
Step-by-step explanation:
8 is about 3 because it say to round to the nearest whole number
Answer:
steps below
Step-by-step explanation:
3.2.1 AD = DB* sin 2 = DB * sin θ .. DE // AB ∠2= θ ... (1)
By laws of sines: DB / sin ∠5 = x / sin ∠4
∠4 = θ-α ∠5 = 180°-<u>∠1</u>-∠4 = 180°-<u>∠3</u>-∠4 = 180°-(90°-θ)-(θ-α)) = 90°+α
DB = (x*sin ∠5)/sin (θ-α)
= (x* sin (90°+α)) / sin (θ-α)
AD = DB*sinθ
= (x* sin (90°+α))*sinθ / sin (θ-α)
= x* (sin90°cosα+cos90°sinα)*sinθ / sin (θ-α) .... sin90°=1, cos90°=0
= x* cosα* sinθ / sin (θ-α)
3.2.2 Please apply Laws of sines to calculate the length