Step-by-step explanation:
Left hand side:
4 [sin⁶ θ + cos⁶ θ]
Rearrange:
4 [(sin² θ)³ + (cos² θ)³]
Factor the sum of cubes:
4 [(sin² θ + cos² θ) (sin⁴ θ − sin² θ cos² θ + cos⁴ θ)]
Pythagorean identity:
4 [sin⁴ θ − sin² θ cos² θ + cos⁴ θ]
Complete the square:
4 [sin⁴ θ + 2 sin² θ cos² θ + cos⁴ θ − 3 sin² θ cos² θ]
4 [(sin² θ + cos² θ)² − 3 sin² θ cos² θ]
Pythagorean identity:
4 [1 − 3 sin² θ cos² θ]
Rearrange:
4 − 12 sin² θ cos² θ
4 − 3 (2 sin θ cos θ)²
Double angle formula:
4 − 3 (sin (2θ))²
4 − 3 sin² (2θ)
Finally, apply Pythagorean identity and simplify:
4 − 3 (1 − cos² (2θ))
4 − 3 + 3 cos² (2θ)
1 + 3 cos² (2θ)
Answer:
24/25
Step-by-step explanation:
Step 1: Define systems of equation
10x - 16y = 12
5x - 3y = 4
Step 2: Rewrite one of the equations
5x = 4 + 3y
x = 4/5 + 3y/5
Step 3: Solve for <em>y</em> using Substitution
- Substitute 2nd rewritten equation into 1: 10(4/5 + 3y/5) - 16y = 12
- Distribute the 10 to both terms: 40/5 + 30y/5 - 16y = 12
- Simplify the fractions down: 8 + 6y - 16y = 12
- Combine like terms (y): 8 - 10y = 12
- Subtract 8 on both sides: -10y = 4
- Divide both sides by -10: y = 4/-10
- Simply the fraction down: y = -2/5
Step 4: Substitute <em>y</em> back into an original equation to solve for <em>x</em>
- Substitute: 5x - 3(-2/5) = 4
- Multiply: 5x + 6/5 = 4
- Subtract 6/5 on both sides: 5x = 14/5
- Divide both sides by 5: x = 14/25
Step 5: Check to see if solution set (14/25, -2/5) is a solution.
- Substitute into an original equation: 10(14/25) - 16(-2/5) = 12
- Multiply each term: 28/5 + 32/5 = 12
- Add: 12 = 12
Here, we see that x = 14/25, y = -2/5 and solution (14/25, -2/5) indeed works.
Step 6: Find <em>x</em> <em>- y</em>
x = 14/25
y = -2/5
- Substitute: 14/25 - (-2/5)
- Simplify (change signs): 14/25 + 2/5
- Add: 24/25
Hope this helped! :)
Answer:
(25x2 + 4y2) (5x + 2y) (−5x + 2y)
Step-by-step explanation:
Factor 16y4−625x4
−625x4 + 16y4
=(25x2 + 4y2) (5x + 2y) (−5x + 2y)
You divide four dhndhdhdjdjdjdjjd
Answer:x
x=−15+5y
x-5y=-15
Step-by-step explanation: