Step-by-step explanation:
![54 \frac{42 \sqrt{2 \sqrt[ \sqrt[2 \sqrt[22 \cot( \cot( \beta \cot(?) ) ) ]{?} ]{?} ]{?} } \times \frac{?}{?} }{?} \times \frac{?}{?} \times \frac{?}{?}](https://tex.z-dn.net/?f=54%20%5Cfrac%7B42%20%5Csqrt%7B2%20%5Csqrt%5B%20%5Csqrt%5B2%20%5Csqrt%5B22%20%5Ccot%28%20%5Ccot%28%20%5Cbeta%20%20%5Ccot%28%3F%29%20%29%20%29%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%7D%7B%3F%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20)
Since this is a right triangle, we can just use Pythagorean Theorem to solve for the side SU:
Length of Hypotenuse^2 = Length of First Leg^2 + Length of Second Leg^2
SU^2 = ST^2 + TU^2
SU = sqrt(ST^2 + TU^2)
SU = sqrt(42^2 + 56^2)
SU = sqrt(4900)
SU = 70
Therefore, the answer is is 70 centimeters.
You can simply count 0,1,2,3 when zero is your starting point