Answer:
a) the proportion of 95% confidence intervals that include the population proportion approaches 0.95
b) Sample proportion does not include the population proportion then the sample proportion is more than 1.96 standard error from the population proportion
Step-by-step explanation:
a)
Given the the data in the question, confidence level is 95%.
In this case as the number of samples increases, the proportion of 95% confidence intervals that include the population proportion approaches 0.95. hence the expected value of the proportion.
b)
Given the the data in the question, confidence level is 95% and sample proportion
we know that In normal distribution 68% confidence indicate one standard deviation, 95% confidence indicate 2 standard deviation while 99.97% confidence indicate 3 standard deviation.
The sample proportion does not include the population proportion, in 95% confidence from the standard normal table 0.95 value lies within the critical value of 1.96 approximately 2.
hence ( z =2 ) that satisfied the 1.96 standard error from the population proportion
hence, Sample proportion does not include the population proportion then the sample proportion is more than 1.96 standard error from the population proportion
Answer:
The distribution of sample means will form a normal distribution
Step-by-step explanation:
Answer:
44
Step-by-step explanation:
13 345
356667++-8756777
Answer:
125$
Step-by-step explanation:
if it's proportional that means it will move up or down in equal amounts
going down from 20 to 5 kg means I divided by 4
so I can also divide 500 by 4 and get 125$