En un triángulo rectángulo con ángulos de 30° -60° -90°, para encontrar la longitud de un lado, debes encontrar la longitud de la hipotenusa.
<h3 /><h3>¿Cómo encontrar la longitud de la hipotenusa?</h3>
Es necesario encontrar la longitud del cateto opuesto al ángulo de 30°, también conocido como cateto menor, y luego multiplicarlo por 2, descubriendo así el cateto de la hipotenusa, utilizando la fórmula del teorema de Pitágoras:
Por lo tanto, puedes usar el teorema de Pitágoras para calcular la longitud del lado que falta en un triángulo rectángulo.
Encuentre más sobre el Teorema de Pitágoras aquí:
brainly.com/question/25839532
#SPJ1
So to do this, we have to get rid of one of the variables by adding or subtracting the two equations together.
I will get rid of y. So, we can multiply the second equation by 2. This gives us
2x-2y=10
Now, we can add both equations
This gives us 7x=-14
Therefore, x = -2
Plug that into another equation.
-10 + 2y=-24
Therefore, y = -7
Hope this helped!! :D
Hey there! I'm happy to help!
When rotating a point 90 degrees clockwise about the origin, our original point (x,y) becomes (-y,x), because it is now at a negative y-value.
We see that our point P is at (1,2). We can use this rotation formula to find the coordinates of P' (the new spot where P is)/
(x,y)⇒(-y,x)
(1,2)⇒(-2,1)
Therefore, the coordinates of the point P' are (-2,1).
Have a wonderful day! :D
Answer:
-1/2 is your answer.
Step-by-step explanation:
The slope formula is (y_2 - y_1)/(x_2 - x_1)
The y's are -3 and 2, while the x's are 9 and -1.
(-3-2)/(9-(-1))=-5/10=
-1/2 is your answer.
Answer:
1.15 or 
Step-by-step explanation:
1. The slope can be found with this formula: 
2. Let's plug in the numbers: 
4.
≈ 1.1538