1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
3 years ago
10

If anybody knows the answer to this please help as soon as possible

Mathematics
1 answer:
zheka24 [161]3 years ago
8 0

Answer:

Because we know the height of the mailbox is 4 feet and the length is 6 feet, and we also know that it's located 54 feet from the base of the flagpole, we can use proportions to solve the problem.

\frac{4}{6\\}=  \frac{x}{54}  

Cross-multiply 4 with 54 and 6 with x to result with 216=6x. Divide 6 to both sides to get 36. So, the height of the flagpole would be 36 feet.

You might be interested in
What is the slope of the line passing through (-3, 5) and (5, -3)?
saveliy_v [14]

we know that

the formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}

in this problem we have

A(-3,5)\ B(5,-3)

substitute the values in the formula

m=\frac{-3-5}{5+3}

m=\frac{-8}{8}

m=-1

therefore

<u>the answer is the option</u>

slope=-1

5 0
4 years ago
Read 2 more answers
Solve the system for x and y.
lapo4ka [179]

Answer:

C is the answers for the question

Step-by-step explanation:

please give me brainlest

3 0
3 years ago
There were 500 animals at an animal shelter. On Saturday, 20 of the dogs and 15 of the cats were adopted. What percentage of the
babymother [125]

Answer:

7%

Step-by-step explanation:

First, let's add the 20 dogs and 15 cats together to find the total number of animals adopted

20 + 15 = 35 animals adopted

We cand do 35 ÷ 200 to find how much of a percent 35 is of 500

35 / 500 = 0.07

Multiply this number by 100 to get a percent

0.07 × 100% = 7%

7% of the animals

7 0
2 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
6/40 with the remainder? <br> (sorry if its 40/6 instead)
mrs_skeptik [129]

Answer:

6.66666666667

Step-by-step explanation:

40 divided by 6 is equal to 6 with a remainder of 4: 40 / 6 = 6 R. 4.

6 0
3 years ago
Other questions:
  • URGENT! LOOK AT SCREENSHOT
    11·2 answers
  • How do you do a, b, c, d? With work shown thank you.
    8·1 answer
  • Drag each description to the correct location on the chart. In a large single-elimination basketball tournament, the first round
    8·1 answer
  • If A is the area of a circle with radius r and the circle expands as time passes, find dA/dt in terms of dx/dt
    10·1 answer
  • Jimmy is trying to dive down and touch the bottom of the pool. On his first try he makes it 1/3 of the way to the bottom. On his
    11·1 answer
  • E histogram shows frequencies for the ages of 25 randomly selected ceos. approximately what is a typical age of a ceo in this​ s
    9·1 answer
  • -0.024 as a fraction and simplest form???
    8·1 answer
  • 2/7y-5= -3 need help solving
    15·1 answer
  • How many ways can 3 crayons be selected from a<br> box of 24 crayons to color a picture?
    12·1 answer
  • Which combine statement is biconditional??
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!