<span>When BaCrO4 dissolves, it dissociates like this: BaCrO4 (s) --> Ba2+ + CrO42-
</span>
<span>The expression for Ksp is [Ba2+] x [CrO42-]
</span>
There is a 1:1 molar ratio between the BaCrO4 that dissolves and Ba2+ and CrO42-
that are in solution. This means that, when 1.08×10⁻⁵ moles per liter of BaCrO4 dissolves, it produces 1.08×10⁻⁵ mol/L of Ba2+ and 1.08×10⁻⁵ of <span>CrO42-. So, applying the expression:
</span>
Ksp = (1.08×10⁻⁵ ) x (1.08×10⁻⁵ )
= 1.166 x 10⁻¹⁰
<h3>
Answer:</h3>
- Balanced Equation; 2Fe + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂
- Why balance?: To obey the law of conservation of mass
- Subscripts can not be changed, since they show the actual number of atoms of each element in a compound.
<h3>
Explanation:</h3>
- The balanced equation for the reaction between the iron metal and sulfuric acid to produces iron (III) sulfate and hydrogen gas is given by;
2Fe + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂
- Balancing chemical equations ensures that they obey the law of conservation of mass which requires the mass of reactants and the mass of products to be equal.
- Balancing is done by putting coefficients on reactants and products while not affecting the subscripts as subscripts show the actual number of atoms of an element in a compound.
<u><em>THEY ARE NOT AFFECTED BY EARTH`S ATMOSPHERE</em></u>