No matter how big or little a material is, its properties remain the same. Size, form, color, and mass are the qualities that distinguish a material from non-substances. All of these qualities, including size, shape, color, and mass, can be seen and measured. Some characteristics are physical, while others are chemical. Physical characteristics include mass, volume, density, and color. Viscosity and solubility are examples of chemical qualities.
It takes so much heat to melt ice or evaporate water because extra energy is required to break the hydrogen bonds between water molecules.
<h3>
Hydrogen bond</h3>
Hydrogen bonding is an electrostatic force of attraction between a hydrogen atom found between a pair of other atoms having a high affinity for electrons.
Hydrogen bonds cause water to be exceptionally attracted to each other creating cohesion.
It takes so much heat to melt ice or evaporate water because extra energy is required to break the hydrogen bonds between water molecules.
Find out more on Hydrogen bond at: brainly.com/question/12798212
The best answer for the question above would be the chloroflourocarbons or the CFCs. These chloroflourocarbons or CFCs are the ones responsible for the depletion of the ozone - which leads to leaving a hole in its layer. These gases eat out the ozone layer and allows harmful UV rays of the sun to come in the Earth.
Answer:
0.29
Explanation:
Since the name of the acid (and the equation) is not given, you must assume that it is a 1:1 ratio. Use equation: volume of acid x molarity of acid = volume of base x molarity of base (when the ratio is 1:1).
Answer: The original volume in liters was 0.0707L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.85 atm
= final pressure of gas = 456 mm Hg = 0.60 atm (760mmHg=1atm)
= initial volume of gas = ?
= final volume of gas = 94.0 ml
= initial temperature of gas = 
= final temperature of gas =

Now put all the given values in the above equation, we get:

(1L=1000ml)
Thus the original volume in liters was 0.0707L