Answer:
The of a substrate will be "10 μM".
Explanation:
The given values are:
Reaction velocity,
As we know,
⇒
On putting the estimated values, we get
⇒
⇒
⇒
On subtracting "40" from both sides, we get
⇒
⇒
Answer:
5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 1 mole of the compound contains 6.023 * 10²³ atoms, 8.3 moles of the compound how many atoms does it have?
amount of atoms≅ 5*10²⁴ atoms
<u><em>5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.</em></u>
The volume of base required to completely neutralize the acid is 3.2 mL of NaOH.
The equation of the reaction is;
2NaOH(aq) + H2SO4(aq) -----> Na2SO4(aq) + 2H2O(l)
From the question;
Concentration of acid CA = 0.426M
Concentration of base CB = 2.658M
Volume of acid VA = 10.00mL
Volume of base VB = ?
Number of moles of acid NA = 1
Number of moles of base NB = 2
Using the relation;
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
VB = CAVANB/CBNA
VB = 0.426M × 10.00mL × 2/ 2.658M × 1
VB = 3.2 mL
Learn more: brainly.com/question/6111443
Answer: let me figure it out rlly quick
Explanation:
Answer:
The mass of SO2 will be equal to the sum of the mass of S and O2.
Explanation:
This can be explained by the <em>Law of Conservation of Mass</em>. This law states that mass can neither be created nor destroyed. Knowing this, we can say that the reactants of a chemical reaction must be equal to the products.
In this case, the reactants Sulfur (S) and Oxygen (O2) must equal the mass of the product Sulfur Dioxide (SO2). Therefore, the statement <em>"The mass of SO2 will be equal to the sum of the mass of S and O2" </em>is correct.