Answer:
Option D is correct.
No, the triangles are not similar.
Step-by-step explanation:
AA postulates states that two triangles are similar if they have two corresponding angles equal.
Labelled the diagram as shown below:
We know that sum of all the measure of the angles in a triangle is 180 degree.
In triangle ABC:
![\angle A + \angle B + \angle C = 180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20A%20%2B%20%5Cangle%20B%20%2B%20%5Cangle%20C%20%3D%20180%5E%7B%5Ccirc%7D)
⇒![30.4^{\circ}+84.6^{\circ}+\angle C = 180^{\circ}](https://tex.z-dn.net/?f=30.4%5E%7B%5Ccirc%7D%2B84.6%5E%7B%5Ccirc%7D%2B%5Cangle%20C%20%3D%20180%5E%7B%5Ccirc%7D)
⇒![115^{\circ}+\angle C = 180^{\circ}](https://tex.z-dn.net/?f=115%5E%7B%5Ccirc%7D%2B%5Cangle%20C%20%3D%20180%5E%7B%5Ccirc%7D)
Subtract 115 degree from both sides we get;
⇒![\angle C = 65^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20C%20%3D%2065%5E%7B%5Ccirc%7D)
In triangle ABC and PQR
![\angle A = \angle Q = 84.6^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20A%20%3D%20%5Cangle%20Q%20%3D%2084.6%5E%7B%5Ccirc%7D)
![\angle C \neq \angle R](https://tex.z-dn.net/?f=%5Cangle%20C%20%5Cneq%20%5Cangle%20R)
i.e ![65^{\circ}\neq 66^{\circ}](https://tex.z-dn.net/?f=65%5E%7B%5Ccirc%7D%5Cneq%2066%5E%7B%5Ccirc%7D)
⇒These triangles does not satisfy the AA postulates
Therefore, the given triangles are not similar.