She buys 2 boxes each week for a year (there is 52 weeks in a year) = 2 x 52 = 104 boxes per year
if each box contains 8 granola bars...and she buys 104 boxes, then she buys:
104 * 8 = 832 granola bars
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
$27.2
Step-by-step explanation:
680x0.04=. 27.2
She made $27.2 last week
Answer: 6.
Step-by-step explanation: To find the mean, the first step is to add all the data together. Here's how it should look:
2 + 3 + 6 + 6 + 7 + 8 + 8 + 8 = 48.
Next, you need to divide whatever you get after adding the data by how many numbers there are for your data. In this case, 48 was the answer when we added all the data. In total, you have 8 numbers in your data, so you need to divide 8 from 48. It should look like this:
48 / 8 = 6.
Therefore, the mean for this data set is 6.
Have a great day! :)
Answer:
A
Step-by-step explanation: