Answer:
<em><u>Soln</u></em><em><u>:</u></em><em><u> </u></em><em><u> </u></em>
<em> </em><em> </em><em> </em><em> </em>
<em> </em><em>Total</em><em> </em><em>ages</em><em> </em><em>=</em><em> </em><em>1</em><em>7</em><em>5</em>
<em> </em><em> </em><em>No</em><em>.</em><em> </em><em>of</em><em> </em><em>ages</em><em>=</em><em> </em><em>6</em><em> </em>
<em> </em><em>Now</em><em>,</em>
<em>A</em><em>verage </em><em>age</em><em>=</em><em> </em><em><u>T</u></em><em><u>otal</u></em><em><u> </u></em><em>ages</em><em>/</em><em>no</em><em>.</em><em> </em><em>of</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>ages</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>7</em><em>5</em><em>/</em><em>6</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>9</em><em>.</em><em>1</em><em>6</em><em>7</em><em> </em><em>ans</em><em>.</em>
Answer:
When you are adding a negative number to a positive number you are effectively subtracting the second number from the first. ... And then you add the negative number, which means you are moving to the left – in the negative direction. Basically you are subtracting the 2. The answer is 2.
Step-by-step explanation:
One way to do it is with calculus. The distance between any point

on the line to the origin is given by

Now, both

and

attain their respective extrema at the same critical points, so we can work with the latter and apply the derivative test to that.

Solving for

, you find a critical point of

.
Next, check the concavity of the squared distance to verify that a minimum occurs at this value. If the second derivative is positive, then the critical point is the site of a minimum.
You have

so indeed, a minimum occurs at

.
The minimum distance is then
900 because just like rounding tens if you have 14 to 11 itll round to 10 if it is from 15-19 youll round to 20. so since 922 isnt 950-999 youll round it to 900
Absolute Value can’t be negative so -3 minus -4 is -7 but since absolute value isn’t able to be negative it turns into 7, the answer is A