Answer:
The area is approximately 30.69 cm^2.
Step-by-step explanation:
To solve this problem, we first have to recognize that the side of the block is a rectangle with a semicircle missing. This means that to find the area, we must find the area of the rectangle and then subtract the area of the semicircle. Using the respective formulas, we get the following expression for area:
A = (length * width) - (1/2*pi*r^2)
Now, we must plug in the given values shown in the figure. The length is 9 cm, the width is 4.5 cm, and the diameter is 5 cm. However, the formula asks for the radius, which is simply half of the diameter, or 2.5 cm.
A = (9 cm * 4.5 cm) - (1/2 * 3.14 * (2.5 cm)^2)
Next, we should perform the operations indicated inside the parentheses.
A = 40.5 cm^2 - 9.81 cm^2
Finally, we can subtract the two values (this represents taking away the area of the semicircle from the rectangle).
A = 30.69 cm^2
Therefore, the area of the side is approximately 30.69 cm^2.
Hope this helps!
Rules: (-) plus (-) equals positive.
Anything negative in absolute value will turn positive. Example, | -2 | —> 2
|-4b-8|+|-1 -b^2| +2b^3; b=-2
First step is substituting all the “b” to -2.
|-4(-2) -8| + |-1 -(-2)^2| +2(-2)^3
Then start solving.
|8-8| + |-1 -(4)| +2(-8)
|0| + |-5| -16
0 +5 -16= -11
Answer: -11
The answer is 15 foot 7 inches or 187 inches.
Answer:
Step-by-step explanation:
Here, you can use a simple formula.
To find the point of intersection you just put x=0 or y=0.
Because, if a graph intersects x-axis, then at this point y=0
Similarly, if a graph intersects y-axis, then at this point x=0
So, for our given line.
y=-1/4 x +2
when , x=0 , y=-1/4 (0)+2=2
So, the graph intersects y-axis at y=2
when , y=0 ,
then 0=-1/4 x+2
or, 1/4 x=2
or, x=8 [multiplying by 4]
So, the graph intersects x-axis at x=8
Answer: The proportion of oil tankers that had spills is
or 0.329.
Step-by-step explanation:
Since we have given that
Number of tankers is drawn = 474
Number of tankers did not have spills = 318
Number of tankers have spills = 474 - 318 = 156
Proportion of oil tankers that had spills is given by

Hence, the proportion of oil tankers that had spills is
or 0.329.