In short, the key value added of CDR data over census or survey approaches is the potential to access current and comprehensive evidence on population size, density, and dynamics, information that is fundamentally necessary for managing any humanitarian emergency or disease-related disaster but which is often
Answer:
The distance is 
Explanation:
From the question we are told that
The distance from the conversation is 
The intensity of the sound at your position is 
The intensity at the sound at the new position is 
Generally the intensity in decibel is is mathematically represented as
![\beta = 10dB log_{10}[\frac{d}{d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20log_%7B10%7D%5B%5Cfrac%7Bd%7D%7Bd_o%7D%20%5D)
The intensity is also mathematically represented as

So
![\beta = 10dB * log_{10}[\frac{P}{A* d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20%2A%20%20log_%7B10%7D%5B%5Cfrac%7BP%7D%7BA%2A%20d_o%7D%20%5D)
=> ![\frac{\beta}{10} = log_{10} [\frac{P}{A (l_o)} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cbeta%7D%7B10%7D%20%20%3D%20%20log_%7B10%7D%20%5B%5Cfrac%7BP%7D%7BA%20%28l_o%29%7D%20%5D)
From the logarithm definition
=> 
=> ![P = A (d_o ) [10^{\frac{\beta }{ 10} } ]](https://tex.z-dn.net/?f=P%20%3D%20%20A%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta%20%7D%7B%2010%7D%20%7D%20%5D)
Here P is the power of the sound wave
and A is the cross-sectional area of the sound wave which is generally in spherical form
Now the power of the sound wave at the first position is mathematically represented as
![P_1 = A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]](https://tex.z-dn.net/?f=P_1%20%3D%20%20A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D)
Now the power of the sound wave at the second position is mathematically represented as
![P_2 = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
Generally power of the wave is constant at both positions so
![A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ] = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![4 \pi r_1 ^2 [10^{\frac{\beta_1 }{ 10} } ] = 4 \pi r_2 ^2 [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=4%20%5Cpi%20r_1%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%204%20%5Cpi%20r_2%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![r_2 = \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%5Csqrt%7Br_1%20%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%5Cbeta_1%7D%7B10%7D%20%7D%7D%7B%2010%5E%7B%5Cfrac%7B%5Cbeta_2%7D%7B10%7D%20%7D%7D%20%5D%7D)
substituting value
![r_2 = \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%20%5Csqrt%7B%2024%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%2040%7D%7B10%7D%20%7D%7D%7B10%5E%7B%5Cfrac%7B80%7D%7B10%7D%20%7D%7D%20%5D%7D)

Answer:
Displacement current flows in the dielectric material(insulated region)
Explanation:
Firstly a capacitor stores charge when a capacitor is charging (or discharging), current flows in the circuit. Also, there is no charge transfer in the dielectric material in the capacitor which is contradictory to the flow of current. Hence, displacement current is the current in the insulated region due to the changing electric flux.
Answer:
Explained
Explanation:
one side of the single magnet attracted the metal surface, but repelled the stack of magnets because magnet's both poles try to attract by inducing opposite pole on the metal surface,but the pole closer to the metal is able to induce more magnetic character .so, attractive force due to this is more strong as the distance is also less as compared to the other pole.