<u>Answer:</u> The angle of diffraction is 0.498°
<u>Explanation:</u>
To calculate the angle of diffraction, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 3
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = 0.100 mm =
(Conversion factor: 1 m = 1000 mm)
= angle of diffraction = ?
Putting values in above equation:

Hence, the angle of diffraction is 0.498°
Explanation:
If a metal rod of length L moves with velocity v is moving perpendicular to its length, in a magnetic field B, the induced emf is given by :

The electric field in the conductor is given by :

It is clear that the electric field is independent of the length of the rod. If the length of the rod is doubled, the electric field in the rod remains the same.
Answer:
it can be calculated by measuring the final distance away from a point, and then subtracting the initial distance
Answer:
6.71×10⁻⁷ m
Explanation:
Using thin film constructive interference formula as:
<u>2×n×t = m×λ</u>
Where,
n is the refractive index of the refracted surface
t is the thickness of the surface
λ is the wavelength
If m =1
Then,
2×n×t = λ
Given that refractive index pf the oil is 1.22
Thickness of the oil = 275 nm
Also, 1 nm = 10⁻⁹ m
Thickness = 275×10⁻⁹ m
So,
Wavelength is :
<u>λ= 2×n×t = 2× 1.22 × 275×10⁻⁹ m = 6.71×10⁻⁷ m</u>
Angular frequency of pendulum is given by

for both pendulum we have


For other pendulum


now we have relate angular frequency given as
[tex\omega_1 - \omega_2 = 3.13 - 2.98 = 0.15 rad/s[/tex]
now time taken to become in phase again is given as


now number of oscillations complete in above time


