Answer:
The total momentum of the system before the collision is 5.334 kg-m/s towards left.
Explanation:
Given that,
Mass of the block A, 
Speed of block A, 
Mass of the block B, 
Mass of block B, 
Let p is the total momentum of the system before the collision. It is given by :

So, the total momentum of the system before the collision is 5.334 kg-m/s towards left. Hence, this is the required solution.
Wavelength = (speed) / (frequency) = (460 m/s) / (230/sec) = <em>2 meters</em>
If the sack weighs 210 newtons, then an upward force of 210 newtons
exactly cancels the downward force of gravity, and makes the net vertical
force on the bag zero.
ANY upward force that's greater than 210 newtons makes the net force
act upward on the bag, and causes it to accelerate upward.
You've listed a lot of data here, in both metric and customary units,
and I'm not even sure it's all needed. Let me try and boil it down:
Pressure on a surface =
(total force on a surface) divided by (area of the surface).
The answer to the question is the pressure expressed in pascals.
There's actually enough information here to answer the question
in 2 different ways. We could ...
-- simply convert (0.03 pound per inch²) to pascals, or
-- go through the whole calculation of force, area, and then their quotient.
To me, converting 0.03 psi to Pa looks easier.
-- 1 pascal = 1 newton / 1 meter²
-- On Earth, 1 kilogram of mass weighs 9.8 Newtons and 2.2 pounds.
From this, we can calculate that
2.2 pounds of force = 9.8 newtons of force.
1 pound = 4.45 newtons
(0.03 pound/inch²) x (4.45 newton/pound) x (1inch/2.54cm)² x (100cm/1m)² =
(0.03 x 4.45 x 1² x 100²) / (2.54² x 1²) newton/meter² = 206.9 Pa .
Answer:
Her displacement is 35 feet. Her distance is 75 feet.
If she walks 20 ft N, 35 ft E, and 20 ft S, it makes a rectangle with one missing side, which is 35. Her displacement is therefore 35, and 20 plus 35 plus 20 equals 75, which is the distance she walked.
Hope this helps!