Answer:4
Step-by-step explanation:
2x-6=14
2x=8
x=4
Well, parallel lines have the same exact slope, so hmmm what's the slope of the one that runs through <span>(0, −3) and (2, 3)?
</span>

<span>
so, we're really looking for a line whose slope is 3, and runs through -1, -1
</span>
![\bf \begin{array}{ccccccccc} &&x_1&&y_1\\ % (a,b) &&(~ -1 &,& -1~) \end{array} \\\\\\ % slope = m slope = m\implies 3 \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-(-1)=3[x-(-1)] \\\\\\ y+1=3(x+1)](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-1%20%26%2C%26%20-1~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%25%20slope%20%20%3D%20m%0Aslope%20%3D%20%20m%5Cimplies%203%0A%5C%5C%5C%5C%5C%5C%0A%25%20point-slope%20intercept%0A%5Cstackrel%7B%5Ctextit%7Bpoint-slope%20form%7D%7D%7By-%20y_1%3D%20m%28x-%20x_1%29%7D%5Cimplies%20y-%28-1%29%3D3%5Bx-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0Ay%2B1%3D3%28x%2B1%29)
<span>
</span>
The triangle of height 5 units and base 7 units will be as follows:
An inequality can be formed by simply translating the problem statement to numerical expressions.
From the problem we know that

added with

hours should be equal or greater than

(helpful insight from the keyword "at least"). Therefore, it's inequality would look like:

(>= is used instead of ≥ for constraints in formatting)
The inequality above best models the situation.