1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
3 years ago
15

If you good in 7th grade math pls help

Mathematics
1 answer:
Furkat [3]3 years ago
7 0

Answer:

y = 37

Step-by-step explanation:

Since we know all the terms will equal 180°, we can set up the following equation to solve for y:

y + 29 + 40 + 2y = 180

3y + 69 = 180

3y = 111

y = 37

You might be interested in
Brainliest to best answer (:
grigory [225]
Its C 
A positive intercept of 4
A solid line because of the equal to part
And shading down because of the sign direction
3 0
3 years ago
Read 2 more answers
2х + Зу = 16.9<br> 5х = y + 7.4
Maurinko [17]

Answer:

(2.3, 4.1)

Step-by-step explanation:

I don't exactly know what you want answer wise

6 0
3 years ago
Find the slope of the line through each pair of points (2, -11), (7, -20)
baherus [9]
7 - 2 = 5
-20 + 11 = -9
slope is 5/-9 or -5/9
(5 right / 9 down)
5 0
2 years ago
What is the volume of the rectangular prism?
Korvikt [17]

Answer:

7 yd^3

hope this helps

have a good day :)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
Other questions:
  • In 24 years, Travis will be 3 times his present age. How old is he now?
    10·2 answers
  • En una familia de Tres hermanas decidieron contratar internet para nueve meses cada un mes cobraron $300 dos de ellas pagaron 4
    11·1 answer
  • Trice a number plus nine is the same as five times the number minus 15 what is the number ?plZz​
    15·1 answer
  • Lines AB and XY are best described as which of the following?
    7·1 answer
  • You wànker YOU WÀNKER
    14·1 answer
  • Which graph represents the following system of inequalities? y ≥ 2x - 5 y &lt; -3x​
    10·1 answer
  • (I WILL GIVE YOU BRAINLIEST IF YOU HELP MEEEE!!)
    5·2 answers
  • Can someone pls help me
    13·1 answer
  • The formula to convert Celsius to Fahrenheit is FC +32. Convert 87°F to
    10·1 answer
  • Help pls I will give 40 brainlest
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!