Answer:

Step-by-step explanation:
we want to figure out the general term of the following recurrence relation

we are given a linear homogeneous recurrence relation which degree is 2. In order to find the general term ,we need to make it a characteristic equation i.e
the steps for solving a linear homogeneous recurrence relation are as follows:
- Create the characteristic equation by moving every term to the left-hand side, set equal to zero.
- Solve the polynomial by factoring or the quadratic formula.
- Determine the form for each solution: distinct roots, repeated roots, or complex roots.
- Use initial conditions to find coefficients using systems of equations or matrices.
Step-1:Create the characteristic equation

Step-2:Solve the polynomial by factoring
factor the quadratic:

solve for x:

Step-3:Determine the form for each solution
since we've two distinct roots,we'd utilize the following formula:

so substitute the roots we got:

Step-4:Use initial conditions to find coefficients using systems of equations
create the system of equation:

solve the system of equation which yields:

finally substitute:


and we're done!
Answer:
A
Step-by-step explanation:
Answer:
x = -5
Step-by-step explanation:
Simplifying
6x + -3(x + -8) = 9
Reorder the terms:
6x + -3(-8 + x) = 9
6x + (-8 * -3 + x * -3) = 9
6x + (24 + -3x) = 9
Reorder the terms:
24 + 6x + -3x = 9
Combine like terms: 6x + -3x = 3x
24 + 3x = 9
Solving
24 + 3x = 9
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-24' to each side of the equation.
24 + -24 + 3x = 9 + -24
Combine like terms: 24 + -24 = 0
0 + 3x = 9 + -24
3x = 9 + -24
Combine like terms: 9 + -24 = -15
3x = -15
Divide each side by '3'.
x = -5
Hope this Helps
I hope this is correct
Answer:
f(x)^-1=x+12
Step-by-step explanation:
f(x)=x-12
y=x-12
x=y-12
y=x+12
f(x)^-1=x+12
Hope it helps.
Answer:
The first one is 360 degrees. The second one is 1080.
Step-by-step explanation:
The sum of the interior angles of a quadrilateral are always 360. If you subtract 90 from 360 to get 270. Multiply 270 by 4 to get 1080.