The answer set is {5,7,9,11}
It would be in the
Hundred thousands
The simple/ <span>common sense method:
</span>The typical lay out of a quadratic equation is ax^2+bx+c
'c' represents where the line crosses the 'y' axis.
The equation is only translated in the 'y' (upwards/downwards) direction, therefore only the 'c' component of the equation is going to change.
A translation upwards of 10 units means that the line will cross the 'y' axis 10 places higher.
9+10=19,
therefore <u>c=19</u>.
The new equation is: <u>y=x^2+19 </u>
<span>
<span>The most complicated/thorough method:
</span></span>This is useful for when the graph is translated both along the 'y' axis and 'x' axis.
ax^2+bx+c
a=1, b=0, c=9
Find the vertex (the highest of lowest point) of f(x).
Use the -b/2a formula to find the 'x' coordinate of your vertex..
x= -0/2*1, your x coordinate is therefore 0.
substitute your x coordinate into your equation to find your y coordinate..
y= 0^2+0+9
y=9.
Your coordinates of your vertex f(x) are therefore <u>(0,9) </u>
The translation of upward 10 units means that the y coordinate of the vertex will increase by 10. The coordinates of the vertex g(x) are therefore:
<u>(0, 19) </u>
substitute your vertex's y coordinate into f(x)
19=x^2+c
19=0+c
c=19
therefore <u>g(x)=x^2+19</u>
They are equal, 8 x 7 = 56 and 7 x 7 = 49
The rate of change of a linear equation (first degree) is equivalent to the slope of a line. Slope is described as the vertical movement (rise) of the line over its horizontal counterpart (run). In determining the rate of change or slope (m) given 1 data point (x',y'), point-slope form is applicable. Point-slope form is: (y-y') = m (x-x'). Substitute the given point (-5,-1) in the equation. By substitution, [y-(-1)] = m [x-(-5)]. Re-arranging the equation, the rate of change or slope is, m = (y+1)/(x+5).