1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
3 years ago
5

Also please let me know if the first 3 are incorrect

Mathematics
1 answer:
zhuklara [117]3 years ago
4 0
They look good keep up the good work
You might be interested in
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
Please Help!! Emergency!! I will make you brainiest and give you 15 points!!!!!
bonufazy [111]

Answer:

see explanation

Step-by-step explanation:

Under a rotation about the origin of 90°

a point (x, y ) → (- y, x ), thus

A(2, 2 ) → A'(- 2, 2 )

B(2, 4 ) → B'(- 4, 2 )

C(4, 6 ) → C'(- 6, 4 )

D(6, 4 ) → D'(- 4, 6 )

E(6, 2 ) → E'(- 2, 6 )

6 0
3 years ago
Find the difference in simplest form:
Andrew [12]

Answer:

D. is the answer I got i think it is right but IDK

4 0
3 years ago
Read 2 more answers
Find the length of each arc. Round to the nearest tenth.
avanturin [10]

Answer:

arc ≈ 5.5 units

Step-by-step explanation:

The arc of the circle is calculated as

arc = circumference of circle × fraction of circle

     = 2πr × \frac{\frac{\pi }{2} }{2\pi } ( r is the radius )

    = 2π × 3.5 × \frac{1}{4}

    = \frac{7\pi }{4}

    ≈ 5.5 ( to the nearest tenth )

7 0
3 years ago
A recipe requires 1/3 cup of milk for each 1/4 cup of water. How many cups of water
GuDViN [60]

Answer:

The answer is D 11/3

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Write a fact with the same sum as 7+ 5.
    9·2 answers
  • Cecilia is making shorts with 8 belt loop. To make the loops, she needs 8 strips of fabric. Each strip measures 1 1/4 inches wid
    11·1 answer
  • Jordan uses a garden hose to fill a 24 gallon tub with water in 3 minutes. at what rate did the water flow through the hose?​
    12·1 answer
  • The temperature of a certain solution is estimated by taking a large number of independent measurements and averaging them. The
    8·1 answer
  • Nancy was trying to save up $355.At her job she made $7 an hour and she worked 34 hours a week.After paying for her food and oth
    13·1 answer
  • 1. In Kite ABCD below, point E is the midpoint of segment BD. What are the
    13·1 answer
  • Debbie is making 16 cakes for a large
    10·2 answers
  • Calculate 97% of 345m
    6·2 answers
  • Solve the equation<br><br> 1 . J + -2 = -22
    14·2 answers
  • A bottle holds 6 pints of lemonade. How much is this in fluid ounces?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!