I'm pretty sure that this is a trick question, the answer is 61%.
cscx = sinx tan x + cos x
Using xsx x = 1/sin x and tan x = sin x/cos x
![\frac{1}{sin x} = sinx *\frac{sinx }{cos x} + cosx](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%20x%7D%20%3D%20sinx%20%2A%5Cfrac%7Bsinx%20%7D%7Bcos%20x%7D%20%2B%20cosx%20)
![\frac{1}{sin x} = \frac{sin^2x +cos^2x}{cos x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%20x%7D%20%3D%20%5Cfrac%7Bsin%5E2x%20%2Bcos%5E2x%7D%7Bcos%20x%7D%20%20)
![\frac{1}{sin x} = \frac{1}{cos x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%20x%7D%20%3D%20%5Cfrac%7B1%7D%7Bcos%20x%7D%20%20)
Multiplying both sides by cos x
![\frac{cos x}{sin x} = 1](https://tex.z-dn.net/?f=%20%5Cfrac%7Bcos%20x%7D%7Bsin%20x%7D%20%3D%201%20)
cot x =1
Correct option is d .
Step-by-step explanation:
It is given that the angels of a triangle have a sum of 180°. The angles of a rectangle have a sum of 360°. The angels of a pentagon have a sum of 540.
<u>Let me define the each terms.</u>
1. We know that each angle in a triangle is 60°, So there is a three angle in a regular triangle.
2. We know that each angle in a rectangle, is 90°, So there is a four angle in a regular rectangle.
Similarly,
- There is 8 angle in a regular octagon and each angle measurement is 135°.
So, sum of the angles of an octagon = 135° × 8
Sum of the angles of an octagon = 1080°
Therefore, the required sum of the angles of an octagon is 1080°