Answer:
x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204
Step-by-step explanation:
Solve for x:
5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0
Eliminate the cubic term by substituting y = x - 7/20:
1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0
Expand out terms of the left hand side:
5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0
Divide both sides by 5:
y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0
Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:
y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000
y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:
(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000
Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:
(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2
(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:
(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2
(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:
(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2
Complete the square on the right hand side:
(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))
To express the right hand side as a square, find a value of λ such that the last term is 0.
This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.
Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.
(This value will be substituted later):
(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2
Take the square root of both sides:
y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))
Solve using the quadratic formula:
y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))
Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:
y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204
Substitute back for y = x - 7/20:
x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204
Add 7/20 to both sides:
x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204
Substitute back for y = x - 7/20:
x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204
Add 7/20 to both sides:
x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204
Substitute back for y = x - 7/20:
x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204
Add 7/20 to both sides:
x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204
Substitute back for y = x - 7/20:
x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204
Add 7/20 to both sides:
Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204