Answer:
A) The number of atoms in a grain of iron is most similar to the number of meters between Earth and Vega.
The options attached to the question are missing, but out of the numbers presented in the options, 10¹⁷ is closest to 10¹⁸.
B) The mass of a grain of iron is approximately (9 × 10⁻⁵) g
Explanation:
The options attached to the question are missing, after searching online, the image of the question was obtained, but it won't be attached to this solution in order not to violate the community guidelines and lead to deletion of answer.
But, out of the numbers presented in the options, 10¹⁷ is closest to 10¹⁸, hence, the number of atoms in a grain of iron is most similar to the number of meters between Earth and Vega.
The second part of the question asks for the approximate mass of a grain of iron.
1 atom of iron has a mass of (9 × 10⁻²³) g
1 grain of iron has about (1 × 10¹⁸) atoms of iron.
So, the mass of a grain of iron = (9 × 10⁻²³) × (1 × 10¹⁸) = (9 × 10⁻⁵) g
Hope this Helps!!!
Answer:
The answer of the scientific STATEMENT is" Appears That Ants Live In Colonies."
Answer:
The nucleus consists of 25 protons (red) and 30 neutrons (blue). 25 electrons (green) bind to the nucleus, successively occupying available electron shells (rings). Manganese is a transition metal in group 7, period 4, and the d-block of the periodic table. It has a melting point of 1246 degrees Celsius.
<u>Answer:</u> The vapor pressure of the liquid is 0.293 atm
<u>Explanation:</u>
To calculate the vapor pressure of the liquid, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= pressure of the liquid = ?
= Heat of vaporization = 28.9 kJ/mol = 28900 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = 341.88 K
= final temperature = 305.03 K
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28900J/mol}{8.314J/mol.K}[\frac{1}{341.88}-\frac{1}{305.03}]\\\\\ln P_2=-1.228atm\\\\P_2=e^{-1.228}=0.293atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28900J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B341.88%7D-%5Cfrac%7B1%7D%7B305.03%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D-1.228atm%5C%5C%5C%5CP_2%3De%5E%7B-1.228%7D%3D0.293atm)
Hence, the vapor pressure of the liquid is 0.293 atm
Milk mixture and heterogeneous