let's firstly convert the mixed fractions to improper fractions and then proceed.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\begin{array}{ccll} miles&hours\\ \cline{1-2} \frac{9}{2}&\frac{5}{4}\\[1em] x&1 \end{array}\implies \cfrac{~~ \frac{9}{2}~~}{x}=\cfrac{~~ \frac{5}{4}~~}{1}\implies \cfrac{~~ \frac{9}{2}~~}{\frac{x}{1}}=\cfrac{5}{4}\implies \cfrac{9}{2}\cdot \cfrac{1}{x}=\cfrac{5}{4} \\\\\\ \cfrac{9}{2x}=\cfrac{5}{4}\implies 36=10x\implies \cfrac{36}{10}=x\implies \cfrac{18}{5}=x\implies 3\frac{3}{5}=x](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccll%7D%20miles%26hours%5C%5C%20%5Ccline%7B1-2%7D%20%5Cfrac%7B9%7D%7B2%7D%26%5Cfrac%7B5%7D%7B4%7D%5C%5C%5B1em%5D%20x%261%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7Bx%7D%3D%5Ccfrac%7B~~%20%5Cfrac%7B5%7D%7B4%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7B%5Cfrac%7Bx%7D%7B1%7D%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%7D%3D%5Ccfrac%7B5%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2x%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%2036%3D10x%5Cimplies%20%5Ccfrac%7B36%7D%7B10%7D%3Dx%5Cimplies%20%5Ccfrac%7B18%7D%7B5%7D%3Dx%5Cimplies%203%5Cfrac%7B3%7D%7B5%7D%3Dx)

![\large\begin{array}{l} \textsf{a) }\mathsf{(f\circ g)(x)}\\\\ =\mathsf{f\big[g(x)\big]}\\\\ =\mathsf{\big[g(x)\big]^2-6\cdot g(x)+2}\\\\ =\mathsf{\big[\sqrt{x}\big]^2-6\sqrt{x}+2}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(f\circ g)(x)=x-6\sqrt{x}+2} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Ba%29%20%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bf%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5Bg%28x%29%5Cbig%5D%5E2-6%5Ccdot%20g%28x%29%2B2%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5B%5Csqrt%7Bx%7D%5Cbig%5D%5E2-6%5Csqrt%7Bx%7D%2B2%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%3Dx-6%5Csqrt%7Bx%7D%2B2%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
![\large\begin{array}{l} \textsf{b) }\mathsf{(g\circ f)(-2)}\\\\ =\mathsf{g\big[f(-2)\big]}\\\\ =\mathsf{\sqrt{f(-2)}}\\\\ =\mathsf{\sqrt{(-2)^2-6\cdot (-2)+2}}\\\\ =\mathsf{\sqrt{4+12+2}}\\\\ =\mathsf{\sqrt{18}}\\\\ =\mathsf{\sqrt{3^2\cdot 2}}\\\\ =\mathsf{3\sqrt{2}}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(g\circ f)(-2)=3\sqrt{2}} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Bb%29%20%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bg%5Cbig%5Bf%28-2%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7Bf%28-2%29%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B%28-2%29%5E2-6%5Ccdot%20%28-2%29%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B4%2B12%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B18%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B3%5E2%5Ccdot%202%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B3%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%3D3%5Csqrt%7B2%7D%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2181559
Tags: <em>composite function composition evaluate algebra</em>
Answer:
- 2-point shots = 41, 1-point shots = 16
Step-by-step explanation:
Let the number of 1-point shots is x and 2-points shots is y.
The system as per question is
Solve it by elimination, subtract the first equation from the second
- x + 2y - x - y = 98 - 57
- y = 41
Find the value of x
Answer:
1/6
Step-by-step explanation:
You have one die, with one 4 and six sides. The probability of getting a 4 with one roll is 1/6.