Answer:
Yes
Step-by-step explanation:
Answer:
12.14
Step-by-step explanation:
because if 11.44 id added to .7 we add a zero to point .7. .70
11.44
+ .70
12.14
Answer:
Rate = 10^(log[Ending Amount / Beginning Amount] ÷ time) -1
Rate = 10^(log(1177 / 1100) ÷ time) -1
Rate = 10^(log( 1.07) ÷ 3) -1
Rate = 10^(0.029383777685 /3) -1
Rate = 10^(0.0097945926) -1
Rate = 1.0228091219 -1
Rate = .0228091219% / hour
Source http://www.1728.org/expgrwth.htm
Step-by-step explanation:
Answer:
B. 16 hrs
Step-by-step explanation:
Distance = rate × time
The best way to do this is to make a table with the info. We are concerned with the trip There and the Return trip. Set it up accordingly:
d = r × t
There
Return
The train made a trip from A to B and then back to A again, so the distances are both the same. We don't know what the distance is, but it doesn't matter. Just go with it for now. It'll be important later.
d = r × t
There d
Return d
We are also told the rates. There is 70 km/hr and return is 80 km/hr
d = r × t
There d = 70
Return d = 80
All that's left is the time column now. We don't know how long it took to get there or back, but if it took 2 hours longer to get There than on the Return, the Return trip took t and the There trip took t + 2:
d = r × t
There d = 70 × t+2
Return d = 80 × t
The distances, remember, are the same for both trips, so that means that by the transitive property of equality, their equations can be set equal to each other:
70(t + 2) = 80t
70t + 140 = 80t
140 = 10t
14 = t
That t represents the Return trip's time. Add 2 hours to it since the There trip's time is t+2. So 14 + 2 = 16.
B. 16 hours
Answer:
First we subtract 8,500 from the 18,040. What we get from that is 9540. Now we divide 9,540 by 3.8 and see what we get. What we get is 2510.52631579 which means it would take around 2510.52631579 days to pay 18,040. In total that rounds to 7 years. Rounding up by the way
Step-by-step explanation: