Knowing the volume of a 3-D shape is extremely when deciding what materials to use and how much of them to use. When you know the volume of the different designs is helpful when deciding which material costs less to use but still meets requirements. For example, if you were trying to decide what material to fill your product with, and say the volume of your product is 36^3. You narrow things down to two products, one costing $54 to fill the entire thing. The other costing $60. Because you have the volume, it will be easy to decide which is better based off of the price per square inch. If you didn't have the volume. You would have to make an estimate and potentially make a bad business decision.
Hope this helps! I apologize for my long response
Answer:
Step-by-step explanation:
Keywords:
System of equations, variables, cost, tickets, adults, children.
For this case we must solve a system of equations with two variables represented by the tickets of students and adults of a school production.
We define the variables according to the given table:
a: Number of tickets sold to adults
c: Amount of tickets sold to children.
We then have the following system of equations:
A + c = 67
10a + 5c =440
From the first equation, we clear the value of the variable c:
C = 67 - a
Answer:
The value that could replace c in the table is:
C = 67 - a
Option C is the answer!
Hope it helped u if yes mark me BRAINLIEST!
Tysm! Plz
2.54 cm/ 1 in = 60 in/ 1. Then you would multiply 2.54 by 60 and get 152.4 cm
A) 15% of $32.00 is $4.80.
B) all together he will be paying $36.80.
i hope this helped, good luck!
Answer:b 1.2
Step-by-step explanation: