The surface

can be parameterized by

where

and

. Then the surface integral can be computed with

The following steps of solving for the roots of 2x² - 4x -3 = 0 were retrieved from another source
Step 1 2x² - 4x = 3
Step 2 2(x² - 2x) = 3
Step 3 2(x² - 2x + 1) = 3 + 1
Step 4 2(x - 1)² = 4
From this, we can see that on Step 3, Tran made a mistake of adding 1 to 3. As we can see, 2(x² - 2x + 1) = 2x² - 4x + 2. That means, instead of adding 1, it should have been 2.
Therefore, the step that Tran first made an error is Step 3<span>.</span>
-----------------------------------------------
Information Given:
-----------------------------------------------
ON = 7x - 9
LM = 6x + 4
MN = x - 7
OL = 2y - 7
-----------------------------------------------
Since it is a parallelogram:
-----------------------------------------------
ON = LM and
MN = OL
-----------------------------------------------
ON = LM:
-----------------------------------------------
7x - 9 = 6x + 4
-----------------------------------------------
Subtract 6x from both sides:
-----------------------------------------------
x - 9 = 4
-----------------------------------------------
Add 9 to both sides:
-----------------------------------------------
x = 13
-----------------------------------------------
MN = OL:
-----------------------------------------------
x - 7 = 2y - 7
-----------------------------------------------
Sub x = 13:
-----------------------------------------------
13 - 7 = 2y - 7
-----------------------------------------------
Simplify:
-----------------------------------------------
6 = 2y - 7
-----------------------------------------------
Add 7 on both sides:
-----------------------------------------------
13 = 2y
-----------------------------------------------
Divide by 2:
-----------------------------------------------
y = 13/2
-----------------------------------------------
Answer: x = 13, y = 13/2 (Answer D)
-----------------------------------------------