1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
7

Solve the system of equations. −2x+5y =−35 7x+2y =25

Mathematics
1 answer:
Otrada [13]3 years ago
4 0

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

You might be interested in
Evaluate x – 2y if x = –3 and y = –6.
sveticcg [70]
X - 2y
-3 - 2(-6)
-3 + 12
9
7 0
3 years ago
Read 2 more answers
Approximately how many centimeters are in 54 ft?
dedylja [7]

Answer:

d) 54 ft = 1645.92 cm

Step-by-step explanation:

Given  : 54 ft.

To find : Approximately how many centimeters are in 54 ft.

Solution : We have given 54 ft.

We know

1 ft = 30.48 cm .

54 ft = 54 * 30.48 cm.

54 ft = 1645.92 cm.

Therefore, d) 54 ft = 1645.92 cm.

5 0
3 years ago
It have 72 chicken and 4ó3 dogs how many are they in altogether
Alborosie

72 chicken and 4ó3 dogs come to 535 animals altogether.


8 0
3 years ago
Read 2 more answers
2. In a given population of two-earner male-female couples, male earnings have a mean of $40,000 per year and a standard deviati
Kobotan [32]

Answer: $85,000

Step-by-step explanation:

Given : In a given population of two-earner male-female couples, male earnings have a mean of $40,000 per year and a standard deviation of $12,000.

\mu_M=40,000\ \ ;\sigma_M=12,000

Female earnings have a mean of $45,000 per year and a standard deviation of $18,000.

\mu_F=45,000\ \ ;\sigma_F=18,000

If  C denote the combined earnings for a randomly selected couple.

Then, the mean of C will be :-

\mu_c=\mu_M+\mu_F\\\\=40,000+45,000=85,000

Hence, the mean of C = $85,000

8 0
3 years ago
8+n the answer is 45
liq [111]

Answer:

n=37

Step-by-step explanation:

45-8=37

6 0
3 years ago
Read 2 more answers
Other questions:
  • Stephanie has 483 skittles to share with her 8 friends if stephanie and her 8friends each have the same amount of skittles steph
    5·2 answers
  • What is the center of the data?
    15·2 answers
  • From a square piece of cardboard paper of area size 9 m2 , squares of the same size are cut off from each corner of the paper. T
    5·1 answer
  • Your electric bill has been as follows for the past six months: July: $78.56 August: $30.21 September: $81.20 October: $79.08 No
    14·1 answer
  • The co-terminal angle of 420°<br><br>​
    15·1 answer
  • A company rents out 17 food booths and 24 game booths at the county fair. The fee for a food booth is $50 plus $6 per day. The f
    5·1 answer
  • Does anyone know what is -17+8y=2x?
    14·1 answer
  • What is the value of x?<br> х<br> X-6<br> 5<br> 3<br> A. 3<br> B. 9<br> C. 15<br> D. 30
    15·1 answer
  • Determine the digits of Q from these clues.
    15·1 answer
  • The ratio of red sweets to sweets that are not red is 2:3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!